
Modeling Event-Based Systems in Ptolemy II
EE249: Design of Embedded Systems: Models, Validation, and Synthesis

Fall 2001

Elaine Cheong and Yang Zhao

Abstract
Networked sensors are becoming an increasingly important field
of research as power and size requirements grow smaller and it
becomes easier to embed thousands or millions of these devices in
our environment. However, there is currently very little
programming support for these and other event-based systems. In
this paper, we focus on TinyOS, an event-based operating system
for Smart Dust networked sensors. We show how to model and
simulate TinyOS at the scheduler level in Ptolemy II.

1 Introduction
Advances in digital circuitry, wireless communications, and
MEMS (microelectromechanical systems) have led to reductions
in size, power consumption, and cost of electronics. This has
enabled remarkably compact, autonomous nodes, each containing
one or more sensors, computation and communication capabilities,
and a power supply. The Smart Dust project [13] at UC Berkeley,
led by Profs. Kris Pister and Joseph Kahn, aims to incorporate the
requisite sensing, communication, and computing hardware, along
with a power supply, in a volume no more than a few cubic
millimeters, while still achieving impressive performance in terms
of sensor functionality and communications capability. These
millimeter-scale nodes are called “Smart Dust” [11][8].

While these researchers investigate how to create the hardware for
sensor node systems, other researchers explore software solutions
for managing large-scale networks of wireless sensors. The
research group of Prof. David Culler at UC Berkeley has
developed TinyOS, a tiny event-based operating system for
networked sensors [14].

Many other researchers are interested in using TinyOS to build
larger applications for networked sensors [15]. However,
concurrent interactions between TinyOS components can make
TinyOS applications very difficult to understand and code
correctly. Moreover, TinyOS applications are extremely difficult
to debug once they are deployed onto the target platform.

The Ptolemy project [12], led by Prof. Edward Lee at UC
Berkeley, studies modeling, simulation, and design of concurrent,
real-time, embedded systems. The focus is on assembly of
concurrent components. The key underlying principle in the
project is the use of well-defined models of computation that
govern the interaction between components. A major problem area
being addressed is the use of heterogeneous mixtures of models of
computation. Ptolemy II is a set of Java packages supporting
heterogeneous modeling, simulation, and design of concurrent
systems.

The goal of our project is to use the Ptolemy II modeling
environment to model the interaction between TinyOS
components at the scheduler level. This project forms the basis for
modeling larger TinyOS applications within Ptolemy II and
eventually generating application code directly from the model. In

this manner, a TinyOS application developer can fully
understand and debug the application in a desktop simulation
environment before testing on the actual embedded platform,
which can be extremely time consuming and error-prone.

2 TinyOS
Networked sensors must react to the real-world environment,
which is inherently concurrent. We first introduce the two main
ways of structuring concurrent systems, as described by Welsh
et al. [16]: thread-driven and event-driven.

In the thread-driven (thread-based) approach, threads and
processes are primarily designed to support multiprogramming,
and existing operating systems strive to virtualize hardware
resources in a way that is transparent to applications. The
system uses a main thread which hands off tasks to individual
task-handling threads, which step through all the stages of
processing that task. Threads are the standard form of
expressing concurrency in most operating systems, and tools for
programming in the sequential style of threads are relatively
mature. However, there are several problems with thread
programming. Synchronization primitives (such as locks,
mutexes, or condition variables) are a common source of bugs,
and lock contention can cause serious performance degradation
as the number of threads competing for a lock increases.
Additionally, the overhead of creating a handler thread for each
task remains, although creating a pool of threads in advance can
mitigate this cost. Finally, context switching between threads
incurs a high overhead.

In the event-driven (event-based) approach, the system uses a
single thread and non-blocking interfaces to I/O subsystems or
timer utilities to “juggle” between concurrent tasks. The
processing of each task is implemented as a finite state machine,
where transitions between states in the FSM are triggered by
events. Event-driven programming has its own problems.
Separate threads no longer handle the sequential flow of each
task; instead, one thread processes all tasks in disjoint stages.
This can make debugging difficult, as stack traces no longer
represent the control flow for the processing of a particular task.
Also, task state must be bundled into the task itself, rather than
stored in local variables or on the stack in a threaded system.
Event-packages are not standardized, and there are few
debugging tools for event-driven programming. However,
event-driven programming avoids many of the problems
associated with synchronization, such as race conditions and
deadlocks. Additionally, event-based systems can be faster than
thread-based systems, since they avoid the overhead of thread
creation and context switching.

TinyOS [7] is a tiny event-based operating system for
networked sensors designed for efficient modularity and
concurrency-intensive operation. Since networked sensor
hardware can vary widely depending on the particular

application, efficient modularity allows the operating system to be
customized to fit application-specific needs. TinyOS runs on
networked sensors must be able to respond to concurrent events
from the real-world environment and process the data quickly.

TinyOS is written in the C programming language and uses C
preprocessing macros to simulate an object-oriented programming
language, but with less overhead.

In the following sections, we describe the TinyOS component
model, scheduler, and application structure in detail.

2.1 TinyOS Component Model
A TinyOS application consists of a graph of components.
Components are arranged hierarchically. Low-level components
map physical hardware into the component model. High-level
components perform control, routing, and all data transformations.
A component has four parts: a frame, a set of command handlers,
a set of event handlers, and a bundle of tasks.

A frame is a statically allocated range of memory associated with
each component. A component stores its state in this fixed-sized
frame.

A command is a non-blocking request made to a lower-level
component. A command handler is a routine associated with the
lower-level component that runs in response to the command. A
command handler provides feedback to its caller by returning
success/failure status. In essence, a command is a C function call.

In TinyOS, an event is the occurrence or happening of significance
to the program, such as the completion of an asynchronous
input/output operation. All events in TinyOS originate from
hardware interrupts. An event handler is a routine invoked by the
operating system to deal with hardware events, either directly or
indirectly.

A task represents a long-running computation. Tasks are atomic
with respect to other tasks and run to completion, though they can
be preempted by events. Tasks provide a way to incorporate
arbitrary computation into the event-driven model.

The calling relationship between commands, events, and tasks is
summarized below:

• Commands may call other commands or post tasks, but
may not signal events.

• Events may call commands, post tasks, or signal other
events.

• Tasks may call commands, post other tasks, or signal
events.

Next, we discuss the scheduling of commands, events, and tasks in
TinyOS.

2.2 TinyOS Scheduling
TinyOS uses a two-level scheduler, in which a small amount of
processing associated with hardware events are performed
immediately, while long running tasks may be interrupted. These
tasks are the microthreads described in [7], where the authors
identify TinyOS as a “microthreaded” operating system.
Microthreads are also known as non-blocking threads or non-
preemptive threads.

Scheduling of computation in TinyOS is split into two levels. The
first level consists of events and commands. These short
computations are executed immediately. The second level consists
of tasks, which are long-running computations. When a task is

“posted”, it is placed in a first-in, first-out (FIFO) queue. Tasks
are executed when there are no events or commands to be run.
There is a single stack in the system, which is assigned to the
currently executing task. A running task may be preempted by
events, in which case the interrupt hardware takes care of saving
the state of a task. A task, however, may not preempt other
tasks.

Next, we discuss how to build and run TinyOS applications.

2.3 TinyOS Applications
A TinyOS application developer first determines how to divide
the application into components. For each component, the
developer must create two files: a .comp file and a .c file.
Additionally, the developer must create a .desc file for the
application.

The component file (.comp) specifies the interface to a
component. This file contains six main parts: (1) the name of
the component, (2) the command handlers, or commands that
other components can call on this component, (3) the signals, or
events that this component generates, (4) the event handlers, (5)
the commands that this component calls, (6) and internal
functions that are only called by this component.

The source file (.c) contains the actual functionality of the
component. The source file contains a fixed-size storage frame,
along with the code for any command handlers, event handlers,
or tasks.

The description file (.desc) specifies how to link the
components in the application together. For example, if a
component calls a command, the developer needs to specify
which component’s command handler will run in response. If a
component signals an event, the developer must specify which
component will handle this event.

The TinyOS scheduler makes several assumptions about
components. Commands must not wait for long or
indeterminate latency (i.e., non-blocking) actions to take place.
A command is intended to perform a small, fixed amount of
work, which occurs within the context of its component's state.
The same assumptions about commands also apply to event
handlers. Tasks perform the primary work. Tasks must never
block or spin wait or they will prevent progress in other
components.

After specifying the interfaces for all of the components,
writing the source code, and determining how to link the
components together, the TinyOS application developer has
several compilation options: the developer can choose to
compile the application for desktop simulation, or he/she can
choose to compile the application to a form suitable for
downloading onto the embedded hardware [9].

Currently, the desktop simulator runs in a command-line shell.
The user can trace items ranging from clock interrupts to LED
output to simulator internals. There is also a simulator
visualization graphical user interface (GUI) written in Java.
However, this graphical tool currently only supports
visualization of radio packet messages (incoming and
outgoing).

3 Ptolemy II
Programming a TinyOS application can be quite complex. To
change a single connection between two components, an

application developer may have to change up to three files.
Because TinyOS is event-based, it is difficult to trace the program
flow of a task, since it may constantly be interrupted by events and
commands. Existing tools for debugging and simulating TinyOS
applications are very limited. A graphical simulation environment
like Ptolemy II would be a better solution to this problem.

Ptolemy II [3] is a Java software system for construction and
execution of concurrent models.

Modeling is the act of representing a system or subsystem
formally. A constructive model defines a computational procedure
that mimics a set of properties of the system. Constructive models
are often used to describe behavior of a system in response to
stimulus from outside the system. Constructive models are also
called executable models. Executable models are sometimes called
simulations, an appropriate term when the executable model is
clearly distinct from the system it models. However, in many
electronic systems, a model that starts as a simulation mutates into
a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This
is particularly true for embedded software.

Executable models are constructed under a model of computation,
which is the set of “laws of physics” that govern the interaction of
components in the model. For embedded systems, the most useful
models of computation handle concurrency and time. This is
because embedded systems consist typically of components that
operate simultaneously and have multiple simultaneous sources of
stimuli. In addition, they operate in a timed (real world)
environment, where the timeliness of their response to stimuli may
be as important as the correctness of the response.

The objective in Ptolemy II is to support the construction and
interoperability of executable models that are built under a wide
variety of models of computation. Ptolemy II takes a component
view of design, in that models are constructed as a set of
interacting components. A model of computation governs the
semantics of the interaction, and thus imposes a discipline on the
interaction of components.

3.1 Models of computation
A model of computation consists of the rules that govern the
interaction, communication, and control flow of a set of
components. In Ptolemy II, a domain is an implementation of a
particular model of computation. Each component is represented
as an actor, which is an executable entity or node in the
component graph. A director is an object that controls the
execution of the actors according to some model of computation.

In this section, we present three domains that we use in Section 4
to model TinyOS. These include the DE (discrete event), TM
(timed multitasking) and FSM (finite state machine) domains.

3.1.1 DE (Discrete Event)
In the DE (discrete event) domain of Ptolemy II, an event is
something that carries a timestamp and possibly a value. Actors
communicate via sequences of events placed in time, along a real
time line. Actors can either be processes that react to events
(implemented as Java threads) or functions that fire when new
events are supplied. A DE scheduler ensures that events are
processed chronologically according to their time stamps by firing
those actors whose available input events have the earliest time
stamp of all pending events.

In the DE model of computation, time is global, in the sense
that all actors share the same global time. The current time of
the model is often called the model time or simulation time to
avoid confusion with current real time.

As in most Ptolemy II domains, actors communicate by sending
tokens through ports. Ports can be input ports, output ports, or
both. Tokens are sent by an output port and received by all input
ports connected to the output port through relations. A relation
is an object representing an interconnection between entities.
When a token is sent from an output port, it is packaged as an
event and stored in a global event queue. By default, the time
stamp of an output is the model time, although specialized DE
actors can produce events with future time stamps.

Actors may also request that they be fired at some time in the
future by calling the fireAt() method of the director. This places
a pure event (one with a time stamp, but no data) on the event
queue. A pure event can be thought of as setting an alarm clock
to be awakened in the future. Sources (actors with no inputs)
can thus be fired despite having no inputs to trigger a firing.
Moreover, actors that introduce delay (outputs have larger time
stamps than the inputs) can use this mechanism to schedule a
firing in the future to produce an output.

In the global event queue, events are sorted based on their time
stamps. An event is removed from the global event queue when
the model time reaches its time stamp, and if it has a data token,
then that token is put into the destination input port.

At any point in the execution of a model, the events stored in
the global event queue have time stamps greater than or equal to
the model time. The DE director is responsible for advancing
(i.e. incrementing) the model time when all events with time
stamps equal to the current model time have been processed
(i.e. the global event queue only contains events with time
stamps strictly greater than the current time). The current time is
advanced to the smallest time stamp of all events in the global
event queue.

3.1.2 TM (Timed Multitasking)
The TM (timed multitasking) domain implements a model of
computation based on priority-driven multitasking, which is
common in real-time operating systems (RTOSs), but with more
deterministic behavior. The TM domain is a new domain in
Ptolemy II, and was formerly known as the RTOS domain.

In the TM domain, actors (conceptually) execute as concurrent
threads in reaction to inputs. The domain provides an event
dispatcher, which maintains a prioritized event queue. The
execution of an actor is triggered by the event dispatcher by
invoking first its prefire() method. The actor may begin
execution of a concurrent thread at this time. Some time later,
the dispatcher will invoke the fire() and postfire() methods of
the actor (unless prefire() returns false).

The amount of time that elapses between the invocation of
prefire() and fire() depends on the declared executionTime and
priority of the actor (or more specifically, of the port of the port
receiving the triggering event). The domain assumes there is a
single resource, the CPU, shared by the execution of all actors.
At any particular time, only one of the actors can get the
resource and execute. Another eligible actor with a higher
priority input event may preempt execution of another actor. If
an actor is not preempted, then the amount of time that elapses
between prefire() and fire() equals the declared executionTime.
If the actor is preempted, then the elapsed time equals the sum

of the executionTime and the execution times of the actors that
preempt it. The model of computation is more deterministic than
the usual priority-driven multitasking in RTOSs because the actor
produces outputs (in its fire() method) only after it has been
assured access to the CPU for its declared executionTime.

3.1.3 FSM (Finite State Machine)
In the FSM (finite state machine) domain, entities represent state
instead of actors, and the connections represent transitions
between states. Execution is a strictly ordered sequence of state
transitions. Evaluation of the guards on each transition determines
when state transitions can be taken.

The FSM domain in Ptolemy II can be hierarchically combined
with other domains [5]. The resulting formalism is called
“*charts” (pronounced “starcharts”) where the star represents a
wildcard. Since most other domains represent concurrent
computations, *charts model concurrent finite state machines with
a variety of concurrency semantics.

4 Modeling TinyOS in Ptolemy II
We have now introduced TinyOS and the problems involved with
programming and debugging TinyOS applications. We have also
presented Ptolemy II, a software package for heterogenous
modeling, simulation, and design of concurrent systems. In order
to model and simulate full TinyOS applications, we must first start
modeling at the scheduler level.

In this section, we describe how to model the event, command,
and task interaction of TinyOS in Ptolemy II by way of example.
We first show a sample application. We also explain the basic way

we model components in Ptolemy II. We then explain how to
use this basic model in the DE and TM domains.

4.1 Sample Application
Figure 1 shows a sample TinyOS application.

In this application, the hardware clock (HW Clock) will trigger
the Clock component, which in turn signals Event1 to
Component A. The Event1 handler of Component A responds to
Event1 by posting Task1 and signaling Event2 to Component B.
The Event2 handler of Component B issues an LEDs_ON
command down to Component C. The command handler of
Component C controls the blinking of the LEDs. This simple
example contains most of the features that TinyOS applications
can have.

TinyOS uses a component model to achieve efficient
modularity. We model a basic TinyOS component with a
TypedCompositeActor in Ptolemy II. We model a component’s
event handler or command handler with an FSMActor inside of
the TypedCompositeActor, since the FSM domain can model
program logic easily. We can model a task with an actor that
depends on the computation of the task. TinyOS assumes there
is a single CPU and that the execution context is shared by the
components. For example, suppose an event handler A signals
an event, which is handled by event handler B. TinyOS will
context switch from A to B. B may take a very short time to
complete and will eventually return the execution context to A.
In Ptolemy, there is currently no domain supporting this
function call return feature. To model this, we add a feedback
connection from the “callee” actor to the “caller” actor (see
Figures 2a and 3a).

We have not yet specified which domain we should use to
model TinyOS at the top level, although we have specified that
we will use the FSM domain to model the program logic of
event and command handlers. We have selected DE and TM as
the most suitable existing domains of Ptolemy II. Since TinyOS
is event-based, and clock interrupts and message arrival are
discrete events, it seems most natural to use a discrete event
model of computation. However, we will see that a priority-
driven multitasking model of computation like TM provides a
more convenient way of modeling task preemption.

We first explain how to model TinyOS in the DE domain. Then,
we explain how to model TinyOS in the TM domain.

4.2 Modeling TinyOS in DE
To model TinyOS in the DE (discrete event) domain of Ptolemy
II, we have to tackle two problems. First, we must determine
how to model the “two-level” scheduler, which schedules

Figure 2: Model of sample application using the DE domain of Ptolemy II. (a) Top level (b) Component A (c) Task1

Figure 1: A sample application

Component B

Component A
A

Component C
 Clock

Internal
 State

Internal
 State

Internal
 State

Internal

 State

Task1

Event2

Event1

HW Clock
 LEDs

Cmd_LEDs_ON

events and commands immediately and keep tasks waiting until all
events and commands have completed. Second, we must
determine how to model the preemption of a task.

The first problem is easier to solve. When an actor posts a task, it
will emit a token representing the task. We call this token a task
token. We do not send this token directly to the corresponding task
actor. Instead, we put the task token in a queue and dispatch the
token to the task actor when it is the task’s turn to run. The queue
will only emit the stored task token when there are no events,
commands or higher priority tasks (tasks that come earlier in a
TinyOS scheduling queue) to execute.

The second problem is difficult to solve with existing Ptolemy
actors because of several problems. In the DE domain, an actor
fires as soon as data is available on its ports, and logically, actors
may fire simultaneously. As stated in the Section 4.1, we would
like to use separate actors to model tasks, events, and commands.
Event or command actors will not block a task actor from running
if its input ports are enabled. Additionally, the DE director will not
count the extra time needed by the task if it is interrupted during
its execution.

So, to handle the preemption of a task, we build a new actor,
which we call PreemptableTask. This new actor has two input
ports: input and interrupt. The input port receives task tokens, and
the interrupt port listens to interrupts from events or commands.
The PreemptableTask actor also maintains a parameter called
executionTime, which specifies the time it takes to execute the
task. When a token is received on the input port, the value is
stored in the actor and the actor is scheduled to fire at
executionTime time units later (using the fireAt() method). During
the execution, if the interrupt port receives a token with a value
equal to true, the task is “preempted”. Later, when the value of
the token on the interrupt port becomes false, the task “resumes
execution” and the elapsed time is calculated and added to the
execution time of the task. The actor is scheduled to fire at this
new execution time. The saved input value is emitted as a token
when the new execution time has passed.

We use one or more FSMActors inside of the DE model in order to
model the component logic.

Figure 2a shows the top level of the Ptolemy model of the sample
application shown in Figure 1. Figure 2b shows the refinement of
Component A, which is a TypedCompositeActor. Component A
consists two composite actors: Event1 handler and Task1. Event1
handler is an FSMActor modeling the logic of the event handler
that responds when Event1 is signaled. Task1 models the task

inside Component A. Figure 2c shows the refinement of Task1
from Figure 2c. The queues (Queue and Queue2) and FSM
actors (fsm actor and fsm actor3) on the left side of Figure 2c
are used to control the time to dispatch the task token to the
PreemptableTask actor (Task1 in Figure 2c). The delay actor
has a delay of 0.0, which helps to avoid the zero-delay loop
problem characteristic of the discrete event model of
computation [5].

As you may have noticed, it is not very convenient to model a
task in the DE domain of Ptolemy even for such a simple
application. In our example, we need six additional actors to
model the refinement of Task1. In the following section, we
discuss our work with the TM domain, which is more suitable
for modeling TinyOS.

4.3 Modeling TinyOS in TM
The TM (timed multitasking) domain of Ptolemy maintains a
prioritized event queue, which sorts events according to their
priority instead of as in DE, where the director sorts events
according to their time stamps. In the TM domain, actors with
higher priority may preempt the execution of an actor with
lower priority. If an actor is preempted, it will take some extra
time, equal to the interruption time, to complete. Each actor in
this domain may have a priority parameter and an
executionTime parameter. An actor’s input ports can also be
specified with the executionTime parameter. By giving higher
priority to event handler actors and command handler actors,
and giving lower priority to task actors, we can easily model the
TinyOS features of two level scheduling and preemption of
tasks.

Figure 3a shows the top level of the model of the same sample
application (Section 4.1) modeled in the DE domain (Section
4.2). This time we model it in the TM domain. Figure 3b shows
what is inside of the composite actor of Component A. Event1
handler is also an FSMActor modeling the logic of the Event1
event handler, similar to our DE model. However, in the TM
domain, we can easily model the task using a single actor,
unlike the DE domain.

By setting each task actor in the TM domain to different
priorities, we can have a more sophisticated priority-based
scheduler for tasks rather than the simple FIFO scheduler
currently used in TinyOS.

We have now shown how to model TinyOS tasks, events
handlers, and command handlers in Ptolemy II and how to

Figure 3: Model of sample application using the TM domain of Ptolemy II. (a) Top Level (b) Component A

connect these models in order to properly model their interaction.

5 Related Work
Freddy Mang and Profs. Luca de Alfaro and Tom Henzinger have
been researching how to use interface automata [1] to model the
event and command interface of TinyOS using the Interface
Automata (IA) domain of Ptolemy II. The interface automata
formalism specifies the temporal aspects of software component
interfaces. Specifically, an automata-based language captures both
input assumptions about the order in which the methods of a
component are called, and output guarantees about the order in
which the component calls external methods. The complex
interaction between events and commands has required some
modification of the interface automata semantics, which is
currently being researched by Mang [10].

We believe that their work differs from our project in that they are
using a more denotational approach, as opposed to our operational
approach, in which we try to model the actual execution of
TinyOS components. Additionally, Mang et al. do not consider the
interaction of tasks in their model.

6 Conclusions and Future Work
TinyOS is a tiny event-based operating system for networked
sensors. Programming tools for these and other event-based
systems are quite poor. Modeling and simulating event-based
systems in a graphical modeling environment on a desktop
computer can make programming and debugging event-driven
systems much easier. We show how to model TinyOS event
handlers, command handlers, and tasks and their interactions in
Ptolemy II, an environment for heterogeneous modeling,
simulation, and design of concurrent systems.

There remains more exciting work to build upon this project. Our
project forms the groundwork for modeling larger TinyOS
applications in Ptolemy II. In the future, we hope to generate
TinyOS code directly from a Ptolemy II model, which can be
compiled and downloaded to the embedded target for running.

While working with Ptolemy II, we have found several areas that
need more work in the future. As mentioned in Section 4.1, there
are no currently existing domains in Ptolemy II that support
function call returns. It may be worthwhile to create a new domain
to support the call-return feature or incorporate it into an existing
domain. We also plan to improve the PreemptableTask actor by
building queues into the actor so that external queues will no
longer be necessary.

7 Acknowledgements
We would like to thank our mentors Xiaojun Liu and Prof.
Edward A. Lee for their invaluable guidance and assistance. We
would also like to thank Rob Szewczyk for his help with TinyOS.

8 References
[1] Luca de Alfaro and Thomas A. Henzinger. Interface

Automata. Proceedings of the Ninth Annual ACM Symposium
on Foundations of Software Engineering (FSE 2001).

[2] David E. Culler, Jason Hill, Philip Buonadonna, Robert
Szewczyk, and Alec Woo. A Network-Centric Approach to
Embedded Software for Tiny Devices. EMSOFT 2001,
Lecture Notes in Computer Science, Volume 2211, pp. 114-
130, 2001.

[3] John Davis II, Christopher Hylands, Bart Kienhuis,
Edward A. Lee, Jie Liu, Xiaojun Liu, Lukito Muliadi,
Steve Neuendorffer, Jeff Tsay, Brian Vogel, and Yuhong
Xiong, "Heterogeneous Concurrent Modeling and Design
in Java," Technical Memorandum UCB/ERL M01/12,
EECS, University of California, Berkeley, March 15, 2001.

[4] Getting up and running with TinyOS.
http://webs.cs.berkeley.edu/tos/

[5] A. Girault, B. Lee, E. A. Lee. Hierarchical finite state
machines with multiple concurrency models. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol.18, (no.6), IEEE, June 1999.
p.742-60.

[6] Jason Hill. A Software Architecture Supporting Networked
Sensors. Masters thesis, December 2000.

[7] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, Kristofer Pister. System architecture
directions for network sensors. ASPLOS 2000.

[8] J. M. Kahn, R. H. Katz and K. S. J. Pister, "Mobile
Networking for Smart Dust". ACM/IEEE Intl. Conf. on
Mobile Computing and Networking (MobiCom 99),
Seattle, WA, August 17-19, 1999.

[9] Macro-Motes. http://www-
bsac.EECS.Berkeley.EDU/~shollar/macro_motes/macrom
otes.html

[10] Freddy Mang. Personal communication. 20 Nov 2001.
[11] K. S. J. Pister, J. M. Kahn and B. E. Boser, "Smart Dust:

Wireless Networks of Millimeter-Scale Sensor Nodes",
Highlight Article in 1999 Electronics Research Laboratory
Research Summary.

[12] The Ptolemy Project. http://ptolemy.eecs.berkeley.edu/
[13] Smart Dust: Autonomous sensing and communication in a

cubic millimeter.
http://robotics.eecs.berkeley.edu/~pister/SmartDust/

[14] TinyOS: An operating system for Networked Sensors.
http://tinyos.millennium.berkeley.edu/

[15] TinyOS Programming Tutorial Workshop. 17 Oct 2001,
Berkeley, CA. http://webs.cs.berkeley.edu/bootcamp.html

[16] Matt Welsh, Steven D. Gribble, Eric A. Brewer, and David
Culler. A Design Framework for Highly Concurrent
Systems. CS Technical Report No. UCB/CSD-00-110.

