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Abstract 
Networked sensors are becoming an increasingly important field 
of research as power and size requirements grow smaller and it 
becomes easier to embed thousands or millions of these devices in 
our environment. However, there is currently very little 
programming support for these and other event-based systems. In 
this paper, we focus on TinyOS, an event-based operating system 
for Smart Dust networked sensors. We show how to model and 
simulate TinyOS at the scheduler level in Ptolemy II. 

1 Introduction 
Advances in digital circuitry, wireless communications, and 
MEMS (microelectromechanical systems) have led to reductions 
in size, power consumption, and cost of electronics. This has 
enabled remarkably compact, autonomous nodes, each containing 
one or more sensors, computation and communication capabilities, 
and a power supply. The Smart Dust project [13] at UC Berkeley, 
led by Profs. Kris Pister and Joseph Kahn, aims to incorporate the 
requisite sensing, communication, and computing hardware, along 
with a power supply, in a volume no more than a few cubic 
millimeters, while still achieving impressive performance in terms 
of sensor functionality and communications capability. These 
millimeter-scale nodes are called “Smart Dust” [11][8]. 

While these researchers investigate how to create the hardware for 
sensor node systems, other researchers explore software solutions 
for managing large-scale networks of wireless sensors. The 
research group of Prof. David Culler at UC Berkeley has 
developed TinyOS, a tiny event-based operating system for 
networked sensors [14]. 

Many other researchers are interested in using TinyOS to build 
larger applications for networked sensors [15]. However, 
concurrent interactions between TinyOS components can make 
TinyOS applications very difficult to understand and code 
correctly. Moreover, TinyOS applications are extremely difficult 
to debug once they are deployed onto the target platform. 

The Ptolemy project [12], led by Prof. Edward Lee at UC 
Berkeley, studies modeling, simulation, and design of concurrent, 
real-time, embedded systems. The focus is on assembly of 
concurrent components. The key underlying principle in the 
project is the use of well-defined models of computation that 
govern the interaction between components. A major problem area 
being addressed is the use of heterogeneous mixtures of models of 
computation. Ptolemy II is a set of Java packages supporting 
heterogeneous modeling, simulation, and design of concurrent 
systems. 

The goal of our project is to use the Ptolemy II modeling 
environment to model the interaction between TinyOS 
components at the scheduler level. This project forms the basis for 
modeling larger TinyOS applications within Ptolemy II and 
eventually generating application code directly from the model. In 

this manner, a TinyOS application developer can fully 
understand and debug the application in a desktop simulation 
environment before testing on the actual embedded platform, 
which can be extremely time consuming and error-prone. 

2 TinyOS 
Networked sensors must react to the real-world environment, 
which is inherently concurrent. We first introduce the two main 
ways of structuring concurrent systems, as described by Welsh 
et al. [16]: thread-driven and event-driven. 

In the thread-driven (thread-based) approach, threads and 
processes are primarily designed to support multiprogramming, 
and existing operating systems strive to virtualize hardware 
resources in a way that is transparent to applications. The 
system uses a main thread which hands off tasks to individual 
task-handling threads, which step through all the stages of 
processing that task. Threads are the standard form of 
expressing concurrency in most operating systems, and tools for 
programming in the sequential style of threads are relatively 
mature. However, there are several problems with thread 
programming. Synchronization primitives (such as locks, 
mutexes, or condition variables) are a common source of bugs, 
and lock contention can cause serious performance degradation 
as the number of threads competing for a lock increases. 
Additionally, the overhead of creating a handler thread for each 
task remains, although creating a pool of threads in advance can 
mitigate this cost. Finally, context switching between threads 
incurs a high overhead.  

In the event-driven (event-based) approach, the system uses a 
single thread and non-blocking interfaces to I/O subsystems or 
timer utilities to “juggle” between concurrent tasks. The 
processing of each task is implemented as a finite state machine, 
where transitions between states in the FSM are triggered by 
events. Event-driven programming has its own problems. 
Separate threads no longer handle the sequential flow of each 
task; instead, one thread processes all tasks in disjoint stages. 
This can make debugging difficult, as stack traces no longer 
represent the control flow for the processing of a particular task. 
Also, task state must be bundled into the task itself, rather than 
stored in local variables or on the stack in a threaded system. 
Event-packages are not standardized, and there are few 
debugging tools for event-driven programming. However, 
event-driven programming avoids many of the problems 
associated with synchronization, such as race conditions and 
deadlocks. Additionally, event-based systems can be faster than 
thread-based systems, since they avoid the overhead of thread 
creation and context switching. 

TinyOS [7] is a tiny event-based operating system for 
networked sensors designed for efficient modularity and 
concurrency-intensive operation. Since networked sensor 
hardware can vary widely depending on the particular 



application, efficient modularity allows the operating system to be 
customized to fit application-specific needs. TinyOS runs on 
networked sensors must be able to respond to concurrent events 
from the real-world environment and process the data quickly. 

TinyOS is written in the C programming language and uses C 
preprocessing macros to simulate an object-oriented programming 
language, but with less overhead. 

In the following sections, we describe the TinyOS component 
model, scheduler, and application structure in detail. 

2.1 TinyOS Component Model 
A TinyOS application consists of a graph of components. 
Components are arranged hierarchically. Low-level components 
map physical hardware into the component model. High-level 
components perform control, routing, and all data transformations. 
A component has four parts: a frame, a set of command handlers, 
a set of event handlers, and a bundle of tasks. 

A frame is a statically allocated range of memory associated with 
each component. A component stores its state in this fixed-sized 
frame. 

A command is a non-blocking request made to a lower-level 
component. A command handler is a routine associated with the 
lower-level component that runs in response to the command. A 
command handler provides feedback to its caller by returning 
success/failure status. In essence, a command is a C function call. 

In TinyOS, an event is the occurrence or happening of significance 
to the program, such as the completion of an asynchronous 
input/output operation. All events in TinyOS originate from 
hardware interrupts. An event handler is a routine invoked by the 
operating system to deal with hardware events, either directly or 
indirectly.  

A task represents a long-running computation. Tasks are atomic 
with respect to other tasks and run to completion, though they can 
be preempted by events. Tasks provide a way to incorporate 
arbitrary computation into the event-driven model. 

The calling relationship between commands, events, and tasks is 
summarized below:  

• Commands may call other commands or post tasks, but 
may not signal events. 

• Events may call commands, post tasks, or signal other 
events. 

• Tasks may call commands, post other tasks, or signal 
events. 

Next, we discuss the scheduling of commands, events, and tasks in 
TinyOS. 

2.2 TinyOS Scheduling 
TinyOS uses a two-level scheduler, in which a small amount of 
processing associated with hardware events are performed 
immediately, while long running tasks may be interrupted. These 
tasks are the microthreads described in [7], where the authors 
identify TinyOS as a “microthreaded” operating system. 
Microthreads are also known as non-blocking threads or non-
preemptive threads.  

Scheduling of computation in TinyOS is split into two levels. The 
first level consists of events and commands. These short 
computations are executed immediately. The second level consists 
of tasks, which are long-running computations. When a task is 

“posted”, it is placed in a first-in, first-out (FIFO) queue. Tasks 
are executed when there are no events or commands to be run. 
There is a single stack in the system, which is assigned to the 
currently executing task. A running task may be preempted by 
events, in which case the interrupt hardware takes care of saving 
the state of a task. A task, however, may not preempt other 
tasks. 

Next, we discuss how to build and run TinyOS applications. 

2.3 TinyOS Applications 
A TinyOS application developer first determines how to divide 
the application into components. For each component, the 
developer must create two files: a .comp file and a .c file. 
Additionally, the developer must create a .desc file for the 
application. 

The component file (.comp) specifies the interface to a 
component. This file contains six main parts: (1) the name of 
the component, (2) the command handlers, or commands that 
other components can call on this component, (3) the signals, or 
events that this component generates, (4) the event handlers, (5) 
the commands that this component calls, (6) and internal 
functions that are only called by this component. 

The source file (.c) contains the actual functionality of the 
component. The source file contains a fixed-size storage frame, 
along with the code for any command handlers, event handlers, 
or tasks. 

The description file (.desc) specifies how to link the 
components in the application together. For example, if a 
component calls a command, the developer needs to specify 
which component’s command handler will run in response. If a 
component signals an event, the developer must specify which 
component will handle this event.  

The TinyOS scheduler makes several assumptions about 
components. Commands must not wait for long or 
indeterminate latency (i.e., non-blocking) actions to take place. 
A command is intended to perform a small, fixed amount of 
work, which occurs within the context of its component's state. 
The same assumptions about commands also apply to event 
handlers. Tasks perform the primary work. Tasks must never 
block or spin wait or they will prevent progress in other 
components. 

After specifying the interfaces for all of the components, 
writing the source code, and determining how to link the 
components together, the TinyOS application developer has 
several compilation options: the developer can choose to 
compile the application for desktop simulation, or he/she can 
choose to compile the application to a form suitable for 
downloading onto the embedded hardware [9]. 

Currently, the desktop simulator runs in a command-line shell. 
The user can trace items ranging from clock interrupts to LED 
output to simulator internals. There is also a simulator 
visualization graphical user interface (GUI) written in Java. 
However, this graphical tool currently only supports 
visualization of radio packet messages (incoming and 
outgoing). 

3 Ptolemy II 
Programming a TinyOS application can be quite complex. To 
change a single connection between two components, an 



application developer may have to change up to three files. 
Because TinyOS is event-based, it is difficult to trace the program 
flow of a task, since it may constantly be interrupted by events and 
commands. Existing tools for debugging and simulating TinyOS 
applications are very limited. A graphical simulation environment 
like Ptolemy II would be a better solution to this problem. 

Ptolemy II [3] is a Java software system for construction and 
execution of concurrent models. 

Modeling is the act of representing a system or subsystem 
formally. A constructive model defines a computational procedure 
that mimics a set of properties of the system. Constructive models 
are often used to describe behavior of a system in response to 
stimulus from outside the system. Constructive models are also 
called executable models. Executable models are sometimes called 
simulations, an appropriate term when the executable model is 
clearly distinct from the system it models. However, in many 
electronic systems, a model that starts as a simulation mutates into 
a software implementation of the system. The distinction between 
the model and the system itself becomes blurred in this case. This 
is particularly true for embedded software. 

Executable models are constructed under a model of computation, 
which is the set of “laws of physics” that govern the interaction of 
components in the model. For embedded systems, the most useful 
models of computation handle concurrency and time. This is 
because embedded systems consist typically of components that 
operate simultaneously and have multiple simultaneous sources of 
stimuli. In addition, they operate in a timed (real world) 
environment, where the timeliness of their response to stimuli may 
be as important as the correctness of the response. 

The objective in Ptolemy II is to support the construction and 
interoperability of executable models that are built under a wide 
variety of models of computation. Ptolemy II takes a component 
view of design, in that models are constructed as a set of 
interacting components. A model of computation governs the 
semantics of the interaction, and thus imposes a discipline on the 
interaction of components. 

3.1 Models of computation 
A model of computation consists of the rules that govern the 
interaction, communication, and control flow of a set of 
components. In Ptolemy II, a domain is an implementation of a 
particular model of computation. Each component is represented 
as an actor, which is an executable entity or node in the 
component graph. A director is an object that controls the 
execution of the actors according to some model of computation. 

In this section, we present three domains that we use in Section 4 
to model TinyOS. These include the DE (discrete event), TM 
(timed multitasking) and FSM (finite state machine) domains. 

3.1.1 DE (Discrete Event) 
In the DE (discrete event) domain of Ptolemy II, an event is 
something that carries a timestamp and possibly a value. Actors 
communicate via sequences of events placed in time, along a real 
time line. Actors can either be processes that react to events 
(implemented as Java threads) or functions that fire when new 
events are supplied. A DE scheduler ensures that events are 
processed chronologically according to their time stamps by firing 
those actors whose available input events have the earliest time 
stamp of all pending events. 

In the DE model of computation, time is global, in the sense 
that all actors share the same global time. The current time of 
the model is often called the model time or simulation time to 
avoid confusion with current real time. 

As in most Ptolemy II domains, actors communicate by sending 
tokens through ports. Ports can be input ports, output ports, or 
both. Tokens are sent by an output port and received by all input 
ports connected to the output port through relations. A relation 
is an object representing an interconnection between entities. 
When a token is sent from an output port, it is packaged as an 
event and stored in a global event queue. By default, the time 
stamp of an output is the model time, although specialized DE 
actors can produce events with future time stamps. 

Actors may also request that they be fired at some time in the 
future by calling the fireAt() method of the director. This places 
a pure event (one with a time stamp, but no data) on the event 
queue. A pure event can be thought of as setting an alarm clock 
to be awakened in the future. Sources (actors with no inputs) 
can thus be fired despite having no inputs to trigger a firing. 
Moreover, actors that introduce delay (outputs have larger time 
stamps than the inputs) can use this mechanism to schedule a 
firing in the future to produce an output. 

In the global event queue, events are sorted based on their time 
stamps. An event is removed from the global event queue when 
the model time reaches its time stamp, and if it has a data token, 
then that token is put into the destination input port. 

At any point in the execution of a model, the events stored in 
the global event queue have time stamps greater than or equal to 
the model time. The DE director is responsible for advancing 
(i.e. incrementing) the model time when all events with time 
stamps equal to the current model time have been processed 
(i.e. the global event queue only contains events with time 
stamps strictly greater than the current time). The current time is 
advanced to the smallest time stamp of all events in the global 
event queue. 

3.1.2 TM (Timed Multitasking) 
The TM (timed multitasking) domain implements a model of 
computation based on priority-driven multitasking, which is 
common in real-time operating systems (RTOSs), but with more 
deterministic behavior. The TM domain is a new domain in 
Ptolemy II, and was formerly known as the RTOS domain. 

In the TM domain, actors (conceptually) execute as concurrent 
threads in reaction to inputs. The domain provides an event 
dispatcher, which maintains a prioritized event queue. The 
execution of an actor is triggered by the event dispatcher by 
invoking first its prefire() method. The actor may begin 
execution of a concurrent thread at this time. Some time later, 
the dispatcher will invoke the fire() and postfire() methods of 
the actor (unless prefire() returns false).  

The amount of time that elapses between the invocation of 
prefire() and fire() depends on the declared executionTime and 
priority of the actor (or more specifically, of the port of the port 
receiving the triggering event). The domain assumes there is a 
single resource, the CPU, shared by the execution of all actors. 
At any particular time, only one of the actors can get the 
resource and execute. Another eligible actor with a higher 
priority input event may preempt execution of another actor. If 
an actor is not preempted, then the amount of time that elapses 
between prefire() and fire() equals the declared executionTime. 
If the actor is preempted, then the elapsed time equals the sum 



of the executionTime and the execution times of the actors that 
preempt it. The model of computation is more deterministic than 
the usual priority-driven multitasking in RTOSs because the actor 
produces outputs (in its fire() method) only after it has been 
assured access to the CPU for its declared executionTime. 

3.1.3 FSM (Finite State Machine) 
In the FSM (finite state machine) domain, entities represent state 
instead of actors, and the connections represent transitions 
between states. Execution is a strictly ordered sequence of state 
transitions. Evaluation of the guards on each transition determines 
when state transitions can be taken. 

The FSM domain in Ptolemy II can be hierarchically combined 
with other domains [5]. The resulting formalism is called 
“*charts” (pronounced “starcharts”) where the star represents a 
wildcard. Since most other domains represent concurrent 
computations, *charts model concurrent finite state machines with 
a variety of concurrency semantics. 

4 Modeling TinyOS in Ptolemy II 
We have now introduced TinyOS and the problems involved with 
programming and debugging TinyOS applications. We have also 
presented Ptolemy II, a software package for heterogenous 
modeling, simulation, and design of concurrent systems. In order 
to model and simulate full TinyOS applications, we must first start 
modeling at the scheduler level. 

In this section, we describe how to model the event, command, 
and task interaction of TinyOS in Ptolemy II by way of example. 
We first show a sample application. We also explain the basic way 

we model components in Ptolemy II. We then explain how to 
use this basic model in the DE and TM domains.  

4.1 Sample Application 
Figure 1 shows a sample TinyOS application. 

In this application, the hardware clock (HW Clock) will trigger 
the Clock component, which in turn signals Event1 to 
Component A. The Event1 handler of Component A responds to 
Event1 by posting Task1 and signaling Event2 to Component B. 
The Event2 handler of Component B issues an LEDs_ON 
command down to Component C. The command handler of 
Component C controls the blinking of the LEDs. This simple 
example contains most of the features that TinyOS applications 
can have.  

TinyOS uses a component model to achieve efficient 
modularity. We model a basic TinyOS component with a 
TypedCompositeActor in Ptolemy II. We model a component’s 
event handler or command handler with an FSMActor inside of 
the TypedCompositeActor, since the FSM domain can model 
program logic easily. We can model a task with an actor that 
depends on the computation of the task. TinyOS assumes there 
is a single CPU and that the execution context is shared by the 
components. For example, suppose an event handler A signals 
an event, which is handled by event handler B. TinyOS will 
context switch from A to B. B may take a very short time to 
complete and will eventually return the execution context to A. 
In Ptolemy, there is currently no domain supporting this 
function call return feature. To model this, we add a feedback 
connection from the “callee” actor to the “caller” actor (see 
Figures 2a and 3a). 

We have not yet specified which domain we should use to 
model TinyOS at the top level, although we have specified that 
we will use the FSM domain to model the program logic of 
event and command handlers. We have selected DE and TM as 
the most suitable existing domains of Ptolemy II. Since TinyOS 
is event-based, and clock interrupts and message arrival are 
discrete events, it seems most natural to use a discrete event 
model of computation. However, we will see that a priority-
driven multitasking model of computation like TM provides a 
more convenient way of modeling task preemption.  

We first explain how to model TinyOS in the DE domain. Then, 
we explain how to model TinyOS in the TM domain. 

4.2 Modeling TinyOS in DE 
To model TinyOS in the DE (discrete event) domain of Ptolemy 
II, we have to tackle two problems. First, we must determine 
how to model the “two-level” scheduler, which schedules 

Figure 2: Model of sample application using the DE domain of Ptolemy II. (a) Top level (b) Component A (c) Task1 
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events and commands immediately and keep tasks waiting until all 
events and commands have completed. Second, we must 
determine how to model the preemption of a task.  

The first problem is easier to solve. When an actor posts a task, it 
will emit a token representing the task. We call this token a task 
token. We do not send this token directly to the corresponding task 
actor. Instead, we put the task token in a queue and dispatch the 
token to the task actor when it is the task’s turn to run. The queue 
will only emit the stored task token when there are no events, 
commands or higher priority tasks (tasks that come earlier in a 
TinyOS scheduling queue) to execute. 

The second problem is difficult to solve with existing Ptolemy 
actors because of several problems. In the DE domain, an actor 
fires as soon as data is available on its ports, and logically, actors 
may fire simultaneously. As stated in the Section 4.1, we would 
like to use separate actors to model tasks, events, and commands. 
Event or command actors will not block a task actor from running 
if its input ports are enabled. Additionally, the DE director will not 
count the extra time needed by the task if it is interrupted during 
its execution. 

So, to handle the preemption of a task, we build a new actor, 
which we call PreemptableTask. This new actor has two input 
ports: input and interrupt. The input port receives task tokens, and 
the interrupt port listens to interrupts from events or commands. 
The PreemptableTask actor also maintains a parameter called 
executionTime, which specifies the time it takes to execute the 
task. When a token is received on the input port, the value is 
stored in the actor and the actor is scheduled to fire at 
executionTime time units later (using the fireAt() method). During 
the execution, if the interrupt port receives a token with a value 
equal to true, the task is “preempted”. Later, when the value of 
the token on the interrupt port becomes false, the task “resumes 
execution” and the elapsed time is calculated and added to the 
execution time of the task. The actor is scheduled to fire at this 
new execution time. The saved input value is emitted as a token 
when the new execution time has passed.  

We use one or more FSMActors inside of the DE model in order to 
model the component logic. 

Figure 2a shows the top level of the Ptolemy model of the sample 
application shown in Figure 1. Figure 2b shows the refinement of 
Component A, which is a TypedCompositeActor. Component A 
consists two composite actors: Event1 handler and Task1. Event1 
handler is an FSMActor modeling the logic of the event handler 
that responds when Event1 is signaled. Task1 models the task 

inside Component A. Figure 2c shows the refinement of Task1 
from Figure 2c. The queues (Queue and Queue2) and FSM 
actors (fsm actor and fsm actor3) on the left side of Figure 2c 
are used to control the time to dispatch the task token to the 
PreemptableTask actor (Task1 in Figure 2c). The delay actor 
has a delay of 0.0, which helps to avoid the zero-delay loop 
problem characteristic of the discrete event model of 
computation [5]. 

As you may have noticed, it is not very convenient to model a 
task in the DE domain of Ptolemy even for such a simple 
application. In our example, we need six additional actors to 
model the refinement of Task1. In the following section, we 
discuss our work with the TM domain, which is more suitable 
for modeling TinyOS. 

4.3 Modeling TinyOS in TM 
The TM (timed multitasking) domain of Ptolemy maintains a 
prioritized event queue, which sorts events according to their 
priority instead of as in DE, where the director sorts events 
according to their time stamps. In the TM domain, actors with 
higher priority may preempt the execution of an actor with 
lower priority. If an actor is preempted, it will take some extra 
time, equal to the interruption time, to complete. Each actor in 
this domain may have a priority parameter and an 
executionTime parameter. An actor’s input ports can also be 
specified with the executionTime parameter. By giving higher 
priority to event handler actors and command handler actors, 
and giving lower priority to task actors, we can easily model the 
TinyOS features of two level scheduling and preemption of 
tasks. 

Figure 3a shows the top level of the model of the same sample 
application (Section 4.1) modeled in the DE domain (Section 
4.2). This time we model it in the TM domain. Figure 3b shows 
what is inside of the composite actor of Component A. Event1 
handler is also an FSMActor modeling the logic of the Event1 
event handler, similar to our DE model. However, in the TM 
domain, we can easily model the task using a single actor, 
unlike the DE domain. 

By setting each task actor in the TM domain to different 
priorities, we can have a more sophisticated priority-based 
scheduler for tasks rather than the simple FIFO scheduler 
currently used in TinyOS. 

We have now shown how to model TinyOS tasks, events 
handlers, and command handlers in Ptolemy II and how to 

Figure 3: Model of sample application using the TM domain of Ptolemy II. (a) Top Level (b) Component A 



connect these models in order to properly model their interaction. 

5 Related Work 
Freddy Mang and Profs. Luca de Alfaro and Tom Henzinger have 
been researching how to use interface automata [1] to model the 
event and command interface of TinyOS using the Interface 
Automata (IA) domain of Ptolemy II. The interface automata 
formalism specifies the temporal aspects of software component 
interfaces. Specifically, an automata-based language captures both 
input assumptions about the order in which the methods of a 
component are called, and output guarantees about the order in 
which the component calls external methods. The complex 
interaction between events and commands has required some 
modification of the interface automata semantics, which is 
currently being researched by Mang [10]. 

We believe that their work differs from our project in that they are 
using a more denotational approach, as opposed to our operational 
approach, in which we try to model the actual execution of 
TinyOS components. Additionally, Mang et al. do not consider the 
interaction of tasks in their model. 

6 Conclusions and Future Work 
TinyOS is a tiny event-based operating system for networked 
sensors. Programming tools for these and other event-based 
systems are quite poor. Modeling and simulating event-based 
systems in a graphical modeling environment on a desktop 
computer can make programming and debugging event-driven 
systems much easier. We show how to model TinyOS event 
handlers, command handlers, and tasks and their interactions in 
Ptolemy II, an environment for heterogeneous modeling, 
simulation, and design of concurrent systems. 

There remains more exciting work to build upon this project. Our 
project forms the groundwork for modeling larger TinyOS 
applications in Ptolemy II. In the future, we hope to generate 
TinyOS code directly from a Ptolemy II model, which can be 
compiled and downloaded to the embedded target for running. 

While working with Ptolemy II, we have found several areas that 
need more work in the future. As mentioned in Section 4.1, there 
are no currently existing domains in Ptolemy II that support 
function call returns. It may be worthwhile to create a new domain 
to support the call-return feature or incorporate it into an existing 
domain. We also plan to improve the PreemptableTask actor by 
building queues into the actor so that external queues will no 
longer be necessary. 
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