JPP: A Java Pre-Processor

Joseph R. Kiniry and Elaine Cheong
Caltech Technical Report CS-TR-98-15
Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

September, 1998

Abstract

The Java Pre-Processor, or JPP for short, is a parsing pre-processor
for the Java programming language. Unlike its namesake (the C/C++
Pre-Processor, cpp), JPP provides functionality above and beyond sim-
ple textual substitution. JPP’s capabilities include code beautification,
code standard conformance checking, class and interface specification and
testing, and documentation generation.

1 Introduction.

The Java Pre-Processor, referred to as JPP henceforth, is a parsing pre-processor
for the Java 1.X programming language. This document will describe the design,
development, and use of JPP.

JPP is primarily used as either a front-end for a Java compiler like javac,
espresso, or guavac, or as a verification and validation tool as part of a config-
uration management system. We will describe both possibilities here as well as
provide a number of examples of innovative alternative uses.

The default JPP configuration corresponds to the Infosphere’s Java Coding
Standard!, a freely available code standard developed at Caltech by the Info-
spheres Research Group?). Any questions as to the details of code standards,
layout, beautification, and verification are addressed in that document. This
document only focuses on the JPP tool.

All aspects of JPP are user configurable. Configuration is accomplished
through the use of Java properties and command-line switches.

1.1 JPP Functionality Summary
Briefly, JPP provides the following functionality:

Lhttp:/ /www.infospheres.caltech.edu/resources/code_standards/java_standard.html
2http://www.infospheres.caltech.edu/

e Code Beautification. JPP can process any legal Java code and reorganize
it in an ordered, aesthetic manner. The rules used in the reformatting
of code are user configurable. JPP is used as a code beautifier to clean
up downloaded or otherwise adopted code before performing a code re-
view. It is also used in preparation for gaining an understanding of a
codebase before modifying and maintaining it. Finally, JPP can be used
to process code from multiple developers/teams regularly to enforce local
coding standards.

o Code Fvaluation. JPP can also be used to take an existing piece of code
and “grade” it. Such a code evaluation comes in several forms:

— Standard Conformance Checking. JPP is configured to a specific code
standard. Code standards give rules on how code is syntactically
arranged, variable naming policies, feature access rules, etc. JPP
can evaluate how well a piece of code conforms to its current code
standard. Such an evaluation comes in the form of a short or long
report which can be automatically mailed to the appropriate parties
and/or logged for review.

— Code Complezity Analysis. JPP knows several standard code com-
plexity algorithms. JPP can evaluate Java classes, interfaces, and
even whole packages and provide complexity measures. These met-
rics can help guide a designer and developer toward more readable,
understandable, and maintainable code. Metrics are also provided as
short or long reports.

— Documentation Analysis. JPP can evaluate the thoroughness of code
documentation. JPP knows what a “real” comment is and performs
information theoretical complexity measures (per-feature and per-
entity entropy) of comments to determine their completeness and
usefulness. JPP will comment on your comments!

— Object-Oriented Design Principles. JPP understands a core set of
object-oriented design principles: the Laws of Demeter, class, inter-
face, and inheritance dependency graph analysis, JavaBean patterns,
and component specification to name a few. JPP can evaluate Java
code and provide suggestions as to how to improve design based upon
these principles.

e Class and Interface Specification. JPP’s specification constructs are in-
spired by Meyer’s Design by Contract. The primary constructs used to
specify a contract for a component are method preconditions and post-
conditions, and class invariants. JPP can enforce and/or encourage the
specification of contracts on the methods of classes and interfaces, and can
test for the validity of such clauses in subtyping relationships.

e Class and Interface Testing. In addition to the aforementioned contract
specifications on methods, JPP supports the specification of loop invari-
ants and variants. All five of these constructs (the three specification

clauses and the two loop clauses) can be transformed by JPP into actual
embedded test harness code and inserted into a class’s methods at the
appropriate points. The insertion of the test code at compile time, and
the enabling and disabling of test code at run-time, is completely under
the control of the developer.

o Documentation Generation. JPP can also transform Java code into HTML,
XML, or LaTeX for direct code documentation and reference. The result-
ing document is properly formatted for pretty-printing and has the appro-
priate embedded links for feature cross-referencing. External language-
specific links can be embedded in the code with special directives to the
pre-processor.

JPP is an evolving tool. If you have suggestions or bug reports, please email
the authors at jpp@unity.cs.caltech.edu.

2 Using the JPP

This section describes how to configure and use JPP. Note that even without
configuring JPP at all it will perform quite well for most users.

2.1 Configuration

JPP is configured with the use of Java properties. Properties are either speci-
fied with property files, with Java environmental variables, or some other VM-
specific mechanism.

2.1.1 Example Property File

A Java property file is simply a list of property value pairs. A default property
file can be created by JPP by using the “write_defaults” switch (see below).
For example, a legal property file would be the following (from the JDK 1.2beta4
distribution):

**

Q(#)flavormap.properties 1.4 98/03/03 1.4, 03/03/98

This properties file is loaded by java.awt.dnd.FlavorMap class
on loading and contains the Motif/X11 platform specific default
mappings between "common" X11 Selection "target" atoms and a
"platform" independent MIME type string.

It is required that there is 1-to-1 (inverse) mapping between
platform targets and MIME strings.

these "defaults" may be augmented by specifying the:

H H H H O H H H H R

awt.DnD.flavorMapFileURL

#

property in the appropriate awt.properties file

this will cause this properties URL to also be loaded into the
FlavorMap.

STRING=text/plain; charset=is08859-1
FILE_NAME=application/x-java-file-list;class=java.util.List

In this property file, two properties are defined, STRING and FILE_NAME.
STRING is given the value text/plain; charset=iso8859-1, and FILE_NAME
has the value application/x-java-file-list;class=java.util.List.

2.1.2 Setting a Property: An Example

For example, suppose that the property ADDRESS should be set to the email
address of the user running JPP. For this author, the proper address would be
kiniry@cs.caltech.edu.

Property Files. On most UNIXes and Windows, this would be accomplished
by adding the line

Setting the property ADDRESS to the string "kiniry@cs.caltech.edu".
ADDRESS=kiniry@cs.caltech.edu

to my property file. Note that all lines that start with a “#” are comments
and are ignored. We will discuss the JPP-specific contents and location of
property files later in this document.

2.1.3 Location of JPP Properties File(s).

JPP searches for the property files for a project in the following places and
order:

e In the user’s home directory. More specifically, whatever the Java runtime
thinks the user’s home directory is.

e In the directory specified with the -project command-line option (see be-
low).

e In the current directory.

Properties specified in these three locations are cumulative/additive. Later
specifications override earlier ones.

Java Property Variables. Alternatively, a property can be set with a Java
property variable. Java property variables are set by using the -D switch with
the java command. Consult your local documentation for more information.

2.1.4 Command-Line Options

Command line options are an alternative way of configuring JPP. As mentioned
previously, command-line options take precedence over environmental variables
and property files.

JPP is not completely configurable from the command-line. Some of JPP’s
functionality is too complex to specify on the command line. Additionally, given
the breadth of capability of this tool and the finite length of most command
lines due to the limitation of many shells, attempting to set every option on the
command-line seems foolhardy.

The following command-line options are available:

-beautzfy
Perform code beautification.

-standard_conformance (warning | fail)
Check conformance to a code standard and choose what action to take
upon conformance failure. The default option is warning.

-complezity (ALG)+
Analyze code complexity with one or more algorithms. The algorithms
should be provided as a comma-separated list. For example, ~complexity
algl,alg2,alg3. No spaces should be included in the list.

-documentation (warning | fail)
Analyze thoroughness of source documentation and, upon conformance
failure, what action to take. The default option is warning.

-design (ALGy)+
Evaluate code with one or more object-oriented design principles.

-verify specification (warning | fail)
Verify class and interface specification and, upon conformance failure,
what action to take. The default option is warning.

-assertion (none | pre | post | invariant | loop | check [all)
Perform class and interface testing to varying degrees:
e none: no assertions are checked
e pre: only preconditions are checked
e post: only postconditions are checked
e invariant: only class invariants are checked
e loop: loop invariants and variants are checked
e check: check instructions are executed
e all: everything is checked

-generate_documentation (HTML | XML | LaTeX)
Generate code as documentation in one of several formats.

~write_defaults
Write the JPP default settings for all options to a property file in the local
directory, which the user can then modify as they see fit.

-f
Use JPP as a filter. Input should be directed to stdin. JPP’s output will
be sent to stdout, and error messages will be sent to stderr.

-0 (filename [prefiz)
Specify output filename or file prefix. Generated files, depending upon
which options are set, are either sent directly to the file specified or to
files starting with the provided prefix. The prefix is used to prefix all
output files (e.g. prefix.html, prefix.report, etc.).

-k
Specify that JPP should continue to operate for as long as possible even
in the presence of errors (like make -k).

—-help

For help on JPP’s command-line options.

-project (directory)
The location of the main project directory.

-debug
If you want to see debugging output.

-source_extension (extension)
Sets the extension of the original source code. L.e. If your source uses
the extension “.j”, then you should pass “j” to this parameter. This
extension defaults to “j”.

-destination_extension (extension)
Sets the extension of the destination source code. This extension defaults
to “java”.

2.1.5 Command-line Properties and Property Files

Properties can be set either in a property file or via a Java property option,
(as mentioned previously, usually -D), on the command-line. If a property is
specified in both the command-line and in the property file, the command-line
option takes precedence.

2.2 Usage

Normally, JPP is used from the command-line as a filter to pre-process Java
source code for a Java compiler. Because most Java compilers will not com-
pile source provided via a pipe, in general a two-stage mechanism is necessary.

However, a two-stage mechanism is problematic in Java because of the naming
restrictions placed upon Java source files.

We have provided several alternate mechanisms for running JPP with the
standard JavaSoft Java compiler. The most simple mechanism is a simple shell
or batch script similar to the following:

#!/bin/sh
jpp —-f < $$@ > $$.java)
if [$7 == 0 1;
then
javac $$.java
fi
We suggest naming Java source files with an alternative suffix such as “.j”
or “.jav”. This way, JPP can process the source file and generate a proper
“.java” file that a compiler will accept.

2.3 Makefiles

Activating JPP should be switchable via your development environment. For
the standard Unix make tool, we suggest using the following makefile rules as
templates. “ClassName” is just a placeholder for your own class name.

ClassName. java: ClassName.j
jpp ClassName. j

ClassName.class: ClassName.java
javac -g -deprecation ClassName.java

If you are using GNU make, this can be (significantly) shortened to the two
following implicit rules:

%.java: %.j
jpp $<

%.class: %.java
javac -g -deprecation $<

These rules will insure that each source file (suffixed with “. j”) is translated
by jpp into the corresponding “. java” file that the Java compiler can handle.

2.4 Project Version Control

JPP-processed source files should not be added to a version control system. Sim-
ilar to object files (“.0”, “.class”, etc.), processed files contain no additional
information and thus would only waste space in a repository.

3 Design of the JPP

This section discusses the analysis and design stages of the development of JPP.
During the analysis stage, we perform a requirements analysis and determine
the objectives of the project. During the design stage, we decide how to fulfill
these goals.

3.1 Analysis

During the analysis phase, we first determine the tool requirements and the
reasons and background for these requirements. We will then determine the top-
level means by which we can accomplish these goals and investigate what impact
these choices will have on development. We also develop a common ontology —
our project dictionary — during the analysis phase so that everyone working on
the project (and reading about it afterwards) has a common vocabulary.

3.1.1 Tool Requirements

In designing the Java Pre-Processor (JPP), we first analyzed our requirements
for the tool. These requirements were introduced in Section 1. Here, we will
discuss them in further detail.

Code Beautification. It is very easy to create ugly code. Poor layout, confus-
ing indentation, and non-standard coding styles can make program code
very difficult to understand. A tool that takes compilable but incompre-
hensible code and generate “pretty” code is called a pretty-printer.

One of JPP functions is that of a pretty-printer for the Java programming
language. The tool should recognize the Java language and the user should
be able to specify the layout of the code output, including indentation,
location of braces, commenting style, etc.

Code Evaluation. JPP should also enforce good software engineering method-
ologies by providing algorithms to check conformance with a code stan-
dard, analyze code complexity, check documentation thoroughness, and
evaluate adherence with a variety of object-oriented design principles.

Every programmer has her own style of programming. However, in any
organization, it is often beneficial to specify a standard coding style. This
code standard often includes rules on documentation, variable naming,
class and variable typing, and code layout. See [7] for a comprehensive
example Java coding standard.

One of the requirements imposed on JPP includes the enforcement of local
code standards. Such standards should be user-specifiable and completely
flexible. JPP should ignore, generate warning messages, or produce a
report describing non-conforming code. The first version of JPP should
implement the Infospheres Java Coding Standard and only be customiz-
able with respect to syntax, not documentation semantics.

Another way to help developers create easy-to-understand code is to pro-
vide a tool that analyzes code complexity. JPP should provide this func-
tionality and allow the user to choose among several different complexity
analysis algorithms.

Once a programmer has created simple, “clean” code that matches lo-
cal coding standards, she can improve its usefulness by thoroughly docu-
menting the code. JPP should aid in the development of thorough code
documentation via a documentation analysis function. This aspect of the
tool should measure the amount of actual code and “real” comments and
provide such information to the programmer via complexity reports.

As an object-oriented language, Java code should be written with object-
oriented design principles in mind. JPP should help programmers improve
the overall quality of their code design by providing a function to check the
code for conformance to various design methodologies. JPP should allow
developers to analyze their code using the Laws of Demeter, class, inter-
face, and inheritance dependency graphs, JavaBean patterns, component
specification patterns, and more.

Documentation Generation. We should also design JPP to automatically
generate documentation. Similar to Javadoc, JPP should use standard
tags enclosed inside of special documentation comment blocks identified
with the strings /** ... =*/. Developers should also be able to use
JPP with “pluggable” subcomponents for alternative documentation type
generation, e.g. XML, ITEX, and roff. Thus, JPP should be extendable so
that the generation of documentation in other personalized or proprietary
formats is possible.

Class and Interface Specification and Testing. First, we provide the reader
with background on Design by Contract and assertions. Then, we discuss
the details of what JPP should provide to help the user implement these
concepts through the specification and testing of Java classes and inter-
faces.

3.1.2 Specification and Testing Fundamentals

Background. Design by Contract [12] is a software engineering methodology
created by Bertrand Meyer, author of the Eiffel [13] programming language.
Contracts between the suppliers and clients, in a software context, are written
by associating a specification with every software element[4]. This contract
promotes a better understanding of software construction, provides an effective
framework for software reliability and quality assurance, and leads to more
effective and complete documentation software components.

Assertions. Design by Contract’s core construct is that of the assertion. An
assertion is a predicate which states a logical sentence that evaluates to true
or false. The assertion is embedded in program code and, if during program

execution the assertion evaluates to false, an error is indicated. There are three
main types of assertions:

precondition - a condition that must be true at the beginning of a section of
code, usually a method.

postcondition - a condition that must be true at the end of a section of code,
again, usually a method.

invariant - a condition that must be true at all stable points in program exe-
cution. We will discuss issues of stability later in this document.

Invariants. There are several types of invariants. A class invariant is an
assertion describing a property that holds for all instances of a class and, poten-
tially, for all static calls to the class. Two other types include loop invariants
and loop variants. A loop invariant is an assertion that is true at the beginning
of the loop and after each execution of the loop body. A loop variant is an
assertion that describes how the data in the loop condition is changed by the
loop. Loop variants are used to check forward progress in the execution of loops
(i.e. to avoid infinite loops and other incorrect loop behavior).

While invariants specify predicates which remain true, a program is a dis-
crete system, and thus invariants are often temporarily violated. In general,
for object-oriented systems, the following rule holds: a public (class or method)
invariant specifies a predicate which holds true at the instant program execution
enters and leaves a public method body. Only at these points in the execution
trace is the program state considered stable and can thus be tested.

Class and Interface Specification. JPP should enforce the specification of
contracts on the methods of classes and interfaces by requiring these clauses to
appear in user-specified documentation sections of the code. JPP should also
encourage the use of class and interface specifications by generating warning
messages when they (the specifications) do not appear. JPP should also check
the validity of the contracts, especially when code (class) inheritance is used.
Aside: There is a distinction between specification of contract and full spec-
ification of semantics. For contract specification, you can only specify truths
that are externally visible to the client object. With full specification, you can
detail (abstractly) (semi-)complete behavior and/or semantics. The first version
of JPP should only allow the user to establish contract specifications. Future
versions might implement the full specification of the semantics of classes.

Class and Interface Testing. C and C++ compilers come with libraries
(e.g. assert.h) that let developers to specify assertions in the code. Java does
not come with this capability.

We should design JPP such that it allows the programmer to check assertions
by using special tags (e.g. Infospheres Java Coding Standard special Javadoc

10

tags) to include expressions for preconditions, postconditions, and invariants in
the comments.

The developer should be able to use the tool to automatically insert expression-
testing code into the original code. This is an extremely useful program testing
and debugging feature. Command-line switches or some other preference con-
figuration feature should be used to enable or disable the test code at runtime.
Thus, these specifications serve a dual purpose: that of providing code docu-
mentation and a test suite harness for assertion checking.

3.1.3 Necessary Algorithms

JPP needs to know several algorithms for full functionality:
e object-oriented code complexity metrics [1, 17, 2]

e documentation analysis metrics (LOComments, Lines of Comments, infor-
mation theoretical complexity: per-feature and per-entity documentation
entropy, etc.)

e object-oriented design principles (Laws of Demeter[11]; class, interface,
inheritance, dependency graph analysis[5]; JavaBean “pattern” confor-
mance; component specification completeness)

3.1.4 Fulfilling the Tool Requirements

The tool should understand Java so that it can manipulate the code correctly.
It should be able to read, understand, and output compilable Java code. The
user should also be able to select which features of the tool she would like to
use each time, so that the tool performs different functions depending on what
is specified for each particular run of the tool.

3.2 Design

In this section, we describe the details of what JPP will do. First, we discuss
why the tool should be designed as a parsing pre-processor. Then, we look at
the various aspects of assertion checking. Finally, we specify the tool interface
and performance goals.

3.2.1 Creating a Pre-Processor

We would like a tool that can be used in all design and implementation environ-
ments, including different brands of compilers, different platforms, and different
editors or shells. It is logical to use the Java programming language to create a
tool that will manipulate Java code for a variety of platforms.

From our requirements analysis, we determined that we would like to use
JPP to do several kinds of code transformations. One possibile way of accom-
plishing this would be to use Perl or another language that can process text
files and manipulate the code, perhaps by using regular expressions. However,

11

the easiest way to accomplish this task would be to parse the code directly.
Building a parser gives us the capability to extend the parser and provide more
functionality based upon this framework.

3.2.2 Visitor Patterns

The parser can create or store an abstract syntax tree (AST) as it parses the
Java source code. An AST is a data structure that, in this case, represents the
structure of the parsed code, including keywords, braces, beginning and end of
methods, etc.

Once an AST is built, a tree walker or visitor can be used to traverse and
manipulate the tree to create the desired output. We will design several different
visitor patterns:

7

e a “pretty” code pattern for printing,

e an assertion transformation pattern, and

¢ several documentation generation patterns

3.2.3 Code Evaluation

JPP will evaluate code from several perspectives. The three primary facets of
code evaluation are code standard conformance, documentation coverage, and
design analysis.

Code Standard Conformance. JPP will enforce user-specified coding stan-
dards. JPP will parse a code and compare its syntax and structure with that of
user-specified syntax and structure rules. JPP will generate reports to highlight
locations of non-conformant code and suggest alternatives. These reports can
come in the form of text documents, HTML, or even Email.

The first version of JPP will only implement the Infospheres Java Coding
Standard. JPP will ignore or generate an error message for an unknown or
incorrect comment tag. Extension to user-defined code standards is under de-
velopment.

Documentation Coverage Our research group has metrics for documen-
tation coverage as part of both our Java coding standard as well as existing
components that check such conformance. Example rules include (a) every fea-
ture has a legitimate comment, (b) every Javadoc comment block is complete
(i.e. completely documents all aspects of the feature being commented), and
(c) the LOComments/LOCs4e (Lines of true comments divided by lines of true
code) ratio must be at least 40%.

In other words, our internal metric is that every piece of code must be at
least 40% comments before we release it. This ratio will be user-adjustable in
JPP.

12

Design Analysis Design analysis comes in two forms: code complexity met-
rics and design analysis.

JPP knows several standard code complexity metrics algorithms. JPP can
evaluate Java classes, interfaces, and even whole packages and provide reports
of complexity measures. These metrics can help guide a designer and developer
toward more readable, understandable, and maintainable code. Metrics are also
provided as short or long reports.

Additionally, JPP has a set of “design rules” which it can check. Examples
of such rules can be found in [7].

3.2.4 Assertion Checking

We wish to support the specification of preconditions, postconditions, class in-
variants, loop invariants, and invariants. JPP will generate test code using
the Infospheres Debug package (called IDebug [8]) to insert assertions into the
original program code to check the code against the specification.

The user will specify assertions using special tags inside of documentation
comments, which will appear before each method and class declaration that he
wishes to test.

The following code block shows how the user can specify assertions inside of
a documentation comment.

/*%

* Qprecondition (Expression) <Throwable> Description.
* Q@postcondition (Expression) <Throwable> Description.
* Q@invariant (Expression) <Throwable> Description.
*%/

JPP will parse and recognize @precondition, @postcondition,and @invariant
tags. It will store the specified expressions in a data structure for later use.
Then, after JPP has parsed the entire program, it should use the parse tree to
determine where to insert the assertion testing code.

The expressions specified after any @precondition, @postcondition, and
@invariant tags will be inserted into program code at the correct places in the
following manner:

@precondition This tag should appear in the documentation comment before
each method. The accompanying test expression is inserted at the begin-
ning of the method, before any statements of the method are executed.

@postcondition This tag should appear in the documentation comment before
each method. The accompanying test expression is inserted at the end of
the method and before each return statement that exits the method.

@invariant This class invariant tag should appear in the documentation com-
ment at the beginning of the class. The accompanying test expression is
inserted at the beginning and end of each method in the class.

13

If multiple @precondition, @postcondition, and @invariant tags are used,
the accompanying expressions will be combined conjunctively (per method or
class). These are also added to the data structure mentioned previously, which
stores the specified expressions.

If any assertion fails, the specified Throwable will be constructed and thrown.
The text of the assertion specification will be passed to the constructor of the
Throwable so that proper context is provided to the debugger and/or developer.

Debug Package. The Infosphere’s Debugging package is an advanced de-
bugging framework for Java. This package provides standard core debugging
and specification constructs such as assertions, debug levels, stack traces, and
specialized exceptions. We will use this package with JPP to implement the
assertion checking when inserting test code that corresponds to the assertion
tags into the original code.

Inheritance of Assertions. Assertions specified for the methods of one class
should still hold true for for inherited methods. JPP supports the standard DBC
weakening of preconditions and strengthening of postconditions.

3.2.5 Tool interface

JPP can be run on the command-line. Use of command-line switches and Java
properties were described in Section 2.1.

JPP will create one directory inside of the directory that contains the source
files, in which it will store temporary files, data files, documentation generation,
etc. The output directory can also be specified on the command line. There
will be several temporary files per class within the project.

JPP will process the Java source files (recursively, if there are additional
subdirectories), rename them with the . java extension, and place them in the
same directory as the source file. So, Java source files should not be named with
the . java extension, since they will be overwritten.

Now that we have discussed the design of the JPP, our choice of creating a
parsing pre-processor, various visitor patterns, plans for assertion checking, and
the tool interface, we will proceed to the a discussion of the actual implemen-
tation of the tool.

4 Implementation of the JPP

In this section, we will first introduce the reader to lexers and parsers. Then,
we will discuss details of the implementation of JPP.

4.1 A Short Introduction to Lexing and Parsing

JPP uses a lexer and parser to analyze Java source code. To understand how
JPP works, we first familiarize the reader with these terms and other related

14

concepts.

Lexical analysis (or scanning) is the first stage in processing a language,
usually for compilation. The source program is fed into a lezer (also known as
a scanner) as a stream of characters. The lexer groups these characters into
lexemes (or tokens), which are word-like elements, such as keywords, identifiers,
and punctuation. These elements are indivisible units of the language.

Next, the parser, (or recognizer), processes the stream of tokens and deter-
mines whether the syntactic structure matches its grammar. A grammar is the
formal definition of the syntactic structure of a language. The parser can also
build an abstract syntazx tree (AST) as part of its output. This data structure
contains the parser’s internal representation of the parsed code.

The first parsers were handwritten. Today, there are a variety of parser
generators available for a wide range of languages. A parser generator takes a
grammar (which could be specified in BNF (Backus Naur Form) or another type
of syntax specification) and outputs source code for a parser. Once compiled, the
generated parser will recognize valid statements and expressions and perform
associated actions.

There are several varieties of parsers that use different algorithms for rec-
ognizing valid code structure. The two kinds of parsers that we used in the
development of JPP were: (1) DFA-based parsers and (2) LL(k)-based parsers.

DFA Parsers. DFA stands for Deterministic Finite-state Automaton. This
finite state machine takes an input event and the current state and uses a state
transition function to determine the next state and the appropriate output event.
It is deterministic because a single input event uniquely determines the next
state. A DFA-based parser is intuitive; each parsed token advances the DFA to
the next state until the appropriate terminal state is reached. For example, a
semicolon signals the end of a statement.

LL(k) Parsers. An LL parser scans from left to right using leftmost deriva-
tion. LL parsers can parse input without backtracking. With leftmost deriva-
tion, the parser replaces the leftmost nonterminal symbol with the matching
definition of a grammatical rule. It repeats this process until all nonterminal
symbols are replaced by terminal symbols. LL(k) parsers require k tokens of
lookahead to decide which rule to apply from a given grammar.

4.2 JavaCC and ANTLR

To create a working pre-processor, we need to be able to parse the code, rec-
ognize the Javadoc tags, and insert assertions at the appropriate places in the
code. We experimented with two Java parser generators: JavaCC [16] and
ANTLR [14]. Both JavaCC and ANTLR come with sample grammars for pars-
ing Java 1.1 code.

Both tools let a developer include arbitrary Java code blocks in the grammar.
Such code can be used to scan or parse complex expressions, manipulate data

15

structures, etc. We started implementing JPP with JavaCC, but eventually
switched to using ANTLR because of problems with the tool.

4.2.1 JavaCC

JavaCC (Java Compiler Compiler) is a Java parser generator written in Java.
First developed at Sun Microsystems, the Java Compiler Compiler (formerly
known as Jack) project began as an effort to build a Java parser for QuickTest
(now known as JavaSpec), SunTest’s Java API testing tool. The Java Compiler
Compiler has evolved into a complete set of tools, including JavaCC, JJTree,
JJDoc, and JavaScope®. We used JavaCC and JJTree.

JavaCC is a DFA-based parser generator. It builds recursive-descent parsers.
A recursive-descent parser is a top-down parser built from a set of mutually
recursive procedures, each of which implements a grammar production rule.
The structure of the resulting program closely mirrors the grammar from which
it was generated. Hand-built parsers are usually recursive-descent parsers.

A JavaCC grammar is specified using code-like extended BNF. Both the
lexical and grammar specification are contained in the same file. JavaCC also
provides lexical state and lexical action capabilities (such as TOKEN, MORE, and
SKIP). There is also a SPECIAL_TOKEN feature that enables the programmer to
define special tokens (such as comments) to ignore during parsing.

JavaCC comes with JJTree, a pre-processor for JavaCC that inserts parse
tree building actions at the appropriate places in the JavaCC grammar source.
The design of JJTree is based on PGen [15], a tree building parser generator
designed by a group at Stanford University. The output of JJTree is run through
JavaCC to create the parser. By default, JJTree generates code to build parse
tree nodes for each nonterminal in the language. Although JavaCC is a top-
down parser, JJTree constructs the parse tree from the bottom up.

For more information, see the JavaCC website?.

4.2.2 ANTLR

ANTLR [14] (Another Tool for Language Recognition) is a parser generator
that can build LL(k) parsers implemented in Java or C++. Originally called
YUCC, ANTLR was created as part of the PCCTS (Purdue Compiler Con-
struction Tool Set®). This project began as a parser-generator project for a
graduate course at Purdue University. PCCTS eventually evolved to include
three tools: ANTLR, DLG, and SORCERER. At first, ANTLR included only
a parser generator. DLG (DFA-based lexical-analyzer generator) was a lex-like
lexical analyzer generator. SORCERER was a grammar-specified tree-parser
generator.

Today, these three tools have been combined into one. ANTLR 2.x.x accepts
three types of grammar specifications: parsers, lexers, and tree-parsers (also

3See the MetaMata home page and the SunTest home page for more information.
4http://www.metamata.com/JavaCC/
Shttp://www.ANTLR.org/pccts133.html

16

called tree-walkers). The current version of ANTLR at the time of this writing
(2.4.0) has been completely rewritten in Java.
For more information, see the ANTLR home page®.

4.3 Development with JavaCC

We started with JavaCC v0.7.1 and later tried 0.8prel. First, we obtained the
sample JavaCC Java grammar (Javal.1.jj). The original grammar specified
three styles of comments:

SINGLE_LINE_COMMENT //
FORMAL _COMMENT [xx .. %/
MULTI_LINE_COMMENT V£ Y

Next, we modified the definition of FORMAL_COMMENT to try to recog-
nize Javadoc tags within the comment.

We attempted to tokenize the tags, but a variety of problems with lookahead
surfaced. We also tried to use UNICODE to specify ranges of characters that
should be parsed as natural language, but these definitions conflicted with other
definitions of the Java language in the grammar. These problems, in addition
to outdated documentation, sparsely commented example code, and very poor
error reporting made us consider switching to ANTLR.

4.4 Development with ANTLR

We used ANTLR v2.3.0 and started with the accompanying sample Java gram-
mar java.g'. ANTLR supports grammar inheritance, thus we can extend the
existing Java 1.1 grammar with our own new productions, adding and overriding
the base grammar.

Grammar Extensions. Several extensions to the base Java 1.1 grammar
are necessary to accomodate our new constructs, especially with respect to
embedded, structured, semantically meaningful comments.

The Java 1.1 grammar comes with 2 styles of comments; one for single line
comments and one for multi-line comments.

SL_COMMENT //
ML_COMMENT VLY

We added a new comment type called DOC_COMMENT (for Java DOCumenta-
tion COMMENT). To recognize this new comment type, we needed to differen-
tiate between “normal” multi-line comments (those that begin with the string
“/*”) and documentation comments (those that begin with the string “/**").

We first overrode ML_.COMMENT (multi-line comment) so that it would
not accept documentation comments:

6http://www.antlr.org/
"We later moved to ANTLR 2.4.0.

17

ML_COMMENT :
||/*||
(’\n’ { newline(); }
| ~C%21\n))
C{LA(2) =2/ }7 7%’
| ’\n’> { newline(); }
| ~C%21\n))
ll*/ll
{
$setType(Token.SKIP) ;
System.err.println("ML_COMMENT:") ;
System.err.println($getText) ;

}

Next, we added definitions for documentation comments:

// Javadoc documentation comments.
DOC_COMMENT :
||/**||
({ LAQ2) '= /> }7 %2
| ’\n’ { newline(); }
| (JAVADOC) => JAVADOC
| ~C*[’\n?))*
ll*/ll
{
System.err.println("DOC_COMMENT:");
System.err.println($getText) ;
}

New Tokens A token was added for each new Javadoc tag introduced by the
code standard. Example tags include:

// metainfo
protected AT_AUTHOR : "Qauthor" ;
protected AT_HISTORY : "G@history" ;

Then, we needed to be able to recognize natural language, (the descrip-
tions that are normally part of documentation comments), and paranthesized
expressions. A production rule was added for each.

protected NATURAL_LANGUAGE returns [String natural_language]
{natural_language = null;} :

“C 2 1°\t’’\n?)

("’\n’)* {natural_language = new String($getText);}

’\n’ {newline();}

protected DOC_COMMENT_EXPRESSION

18

returns [StringBuffer doc_comment_expression]
{doc_comment_expression = null;}

1

(DOC_COMMENT_EXPRESSION
I =)

) *

J)J

{

doc_comment_expression = new StringBuffer($getText);

}

Finally, we added productions to recognize documentation comment tags.
Here are two examples of such productions, one for the simple @author tag,
and one for the more complex @invariant tag.

// Bug tag
// @bug Description of the bug.
protected BUG returns [String bug]
{ bug = null; } :
C P\t +
bug = NATURAL_LANGUAGE
{ System.err.println("Bug tag: " + bug); }

// Invariant tag
// @invariant (Expression) Description.
protected INVARIANT returns [String invariant]
{
invariant = null;
StringBuffer doc_comment_expression;
}o:
({LA(1) '= 2 (37 72 ()%
doc_comment_expression = DOC_COMMENT_EXPRESSION
{
System.err.println("DOC_COMMENT_EXPRESSION: " +
doc_comment_expression) ;
if (invariant_data.length() != 0) {
invariant_data.insert(0, °’(’).append("&&").
append(doc_comment_expression.toString()) .append(’)’);
} else {
invariant_data.append(doc_comment_expression.toString());

}
System.err.println("@invariant_data = " +
invariant_data.toString());
}
(> ?|°\t’)+ invariant = NATURAL_LANGUAGE
{System.err.println("invariant tag: " + invariant); }

19

Production Modifications. We specified an initial required documentation
comment in the parser compilation unit:

// Compilation Unit: In Java, this is a single file. This is the
// start rule for this parser
compilationUnit :
// A compilation unit starts with an optional package definition
(packageDefinition
| /* nothing */
)

// Next we have a series of zero or more import statements
(importDefinition)#*

// A documentation comment must come next.
(documentationComment)+

// VWrapping things up with any number of class or interface
// definitions
(typeDefinition)#

EOF

4.4.1 Current State of JPP
JPP has the following assertion-checking functionality:
e Creates a jpp_data directory if it does not exist.

e Saves preconditions, postconditions, and invariants to a file in the jpp_data
directory.

e Saves method signatures to a file in the jpp_data directory.

ANTLR also has tree building capabilities. The default tree created in the
parser after activating the tree building option (buildAST) is a linked list of
tokens (a degenerate AST). By enabling this option, we can generate the AST
and use a visitor to print out parsed code, transform it for code beautification,
etc.

4.5 Using JavaCC/ANTLR

When developing the Java Pre-Processor, we started with JavaCC and even-
tually switched to ANTLR. By using both of these lexer/parser/tree parser
generators, we discovered various advantages and disadvantages that made it
easier or harder to create the JPP tool.

We started with JavaCC, since this particular package seemed to be the
most popular Java parser generator available. Support included a FAQ, a mail-
ing list (with archive) and a newsgroup. Initially, it seemed like a good package

20

to use, since there were many example grammars included with the distribu-
tion, including a very useful Java 1.1 grammar. However, as we started actually
implementing the JPP, we found that it was diffcult to modify the grammar
to include support for recognition of Javadoc tags. We did not understand the
JavaCC syntax very well, and the JavaCC documentation does not explain these
details very well. Major problems with the documentation included references
to variable names that were not updated with the recent implementation of
JavaCC. Also, debugging the JPP grammar was very difficult, since the gener-
ated error messages were usually not very helpful. Overall, it was easy to start
using JavaCC (in that the grammars were easy to understand), but development
soon became extremely difficult when our new comment specification conflicted
with other parts of the grammar (we were unable to detect where they conflicted
because of the poor error reporting).

We soon switched to ANTLR, having come across this package during our
initial search for Java parser generators. There was also an ANTLR newsgroup,
but a mailing list was only just recently started (as of this writing). ANTLR, did
not come with as many example files as JavaCC, but they adequately demon-
strated the various ANTLR features. Many of them were similar to the appli-
cations included with JavaCC, which made the transition to ANTLR very easy.
This also came with the all-important Java 1.1 grammar. There was plenty of
on-line documentation available for nearly all aspects of the ANTLR package.
A reported bug list was also very helpful when we came across an inconsistency
in the generated Java code. ANTLR error reporting was much more accurate
and detailed than the messages generated by JavaCC.

We found that the most useful features of the ANTLR package were: gram-
mar inheritance (for extension of the Java 1.1 grammar) and protected gram-
mar rules (easy to make subrules for Javadoc tags). The use of rule parameters
and token variables enabled the passing of values between productions rules and
saving this information to a data structure for later use.

4.6 Optimization

Until we use JPP in several large projects we will not know what kinds of
optimization, if any, are necessary to increase JPP’s performance. In general,
we would like the tool to be as non-intrusive as possible, especially with respect
to compilation time. We will supply data on performance when it becomes
available.

5 Conclusion

The Java Pre-Processor is a comprehensive package that can assist Java pro-
grammers with many aspects of the development process. Initially, it can be
used to evaluate the design according to object-oriented design principles. The
developer can also use JPP to check contracts on class methods and interfaces.
Checking assertions with JPP can help shorten the time-consuming debugging

21

phase. The programmer can further improve his code by using JPP to check
for code complexity. Additionally, JPP can be used to beautify code and ensure
that it conforms to local coding standards so that other developers can read and
understand the carefully crafted code. Finally, JPP can automatically generate
software documentation in various formats from the documentation within the
code. Even this can be evaluated by JPP for completeness and usefulness. By
using JPP for each stage of development and improving the Java code based
on JPP evaluations, the software engineer is well on his way to creating well-
structured, easy-to-read, well-documented, reusable, and bug-free code.

5.1 Other Work

Several packages provide or describe functionality similar to various subcompo-
nents of JPP including iContract, source beautifiers, Lint-like tools, JavaNCCS,
and JML.

iContract. iContract by Reto Kramer[9] is a freely available source-code pre-
processor which handles class invariants, pre- and post-conditions. It also uses
special comment tags (e.g. @pre, @post) which are converted into assertion
checks code that is inserted into the source-code. The expressions are a su-
perset of Java, compatible with a subset of the latest UML Object Constraint
Language (OCL)[6]. Highlighted features include old- and return-value refer-
ences in post-conditions, implications and the naming of exception classes to
throw. iContract fully supports the propagation of invariants, pre- and post-
conditions via inheritance and multiple interface implementation, as well as
multiple interface extension mechanisms. The instrumentation level (e.g. only
pre-condition checks) can be chosen on a per file level enabling fine grained,
vertical (inheritance, implementation) and horizontal (delegation) performance
control throughout your system.

Thus, iContract has an advantage on the existing version of JPP because
it has extra specification constructs derived from OCL. We are working in this
direction as well. All other iContract functionality is provided by JPP.

Source Beautifiers. The C Beautifier, often called cb on many UNIX sys-
tems, is an example of a tool that transmutes source code (in this case, the
C language) into a more regular, structured, “beautiful” format. Tools that
have equivalent functionality include cc-mode in Emacs, and the grind tool-
suite (cgrind, vgrind, etc.). JPP has a Java beautifier built in that inherits
much of its configurability from Emacs’ cc-mode. Other tools that fall into this
category include UNIX’s enscript and GNU indent.

Lint-like Tools. lint might be considered the original source code verifier.
Lint-like tools check source code for a variety of “bad-practice” violations (im-
properly initialized variables, unused code blocks, incorrectly typed variables,
etc.) One facet of JPP is essentially a “lint for Java”. Other tools, most notably

22

SRC’s ESC [3] and ParaSoft’s jtest!® include similar (even vastly superior, in
the case of ESC) functionality. JPP was not designed strictly as a static source
checker, and thus is not as comprehensive as these highly focused tools.

JavaNCCS. JavaNCCS is a tool that is provided with the Jacob Java devel-
opment package®. JavaNCSS is a simple command line utility which measures
code using two standard source code metrics for the Java programming language.
The metrics are collected globally, for each class and/or for each function. The
two metrics that JavaNCCS reports are Non-Commenting Source Statements
(NCSS) and Cyclomatic Complexity Number (McCabe metric). JPP supports
both of these metrics as well as many more. Additionally, JavaNCCS provides
its report either from the command line or in a Java window. JPP supports
these two output modes as well HTML, XML and IXTEX.

JML. JML is a behavioral interface specification language for Java developed
at Jowa State University [10]. JPP only provides support for DBC-related spec-
ification constructs. JPP has very different goals (solely interface specification
for test harness generation) than the JML work (full behavioral specification
for validation). Thus, while the two are related because they both deal with
specification languages, JML is the much more complete (and complex) of the
two.

5.2 Future Work

Version 1.0 of JPP provides a subset of the functionality described in this doc-
ument. More specifically, JPP version 1.0 supports:

e Parsing and validation of all Javadoc tags included in [7].

e Transformation of legitimate Java code DBC specifications into runtime
test code.

e Java pretty printing to the syntax specification in [7].

Some fine-tuning of existing functionality is necessary, most of which are
due to idiosyncrasies of the Java grammars and parser generators. This tuning
includes:

e Support for documentation comments for inner classes.
e Support for multi-line documentation comments.

e User-customized tag extensions (since the parser depends upon such enti-
ties).

The remaining functionality we plan to add is fully described in this docu-
ment.

8http://www.parasoft.com/products/jtest /index.htm
9http://mats.gmd.de:8080/clemens/jacob/

23

References

[1]

[2]

[9]

[10]

[11]

A.B. Binkley and S.R. Schach. A comparison of sixteen quality metrics
for object-oriented design. Information Processing Letters, 58(6):271-275,
1996.

S.R. Chidamber and C.F. Kemerer. A metrics suite for object-oriented
design. IEEE Transactions on Software Engineering, 20(6):476-493, 1994.

David L. Detlefs. An overview of the Extended Static Checking system. In
Proceedings of The First Workshop on Formal Methods in Software Prac-
tice, pages 1-9. ACM (SIGSOFT), January 1996. The first brief on ESC
from SRC.

Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts:
Specifying behavioral compositions in object-oriented systems. In Euro-
pean Conference on Object-Oriented Programming/ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications, vol-
ume 25/10 of ACM SIGPLAN Notices, pages 169-180. ACM SIGPLAN:
Programming Languages, ACM Press and Addison-Wesley Publishing
Company, October 1990.

B. Henderson-Sellers, L.L. Constantine, and I.M. Graham. Coupling and
cohesion (towards a valid metrics suite for object-oriented analysis and
design). Object Oriented Systems, 3(3):143-158, 1996.

IBM et al. Object Constraint Language Specification, version 1.1. The
UML 1.1 Consortium, September 1997.

Joseph R. Kiniry. The Infospheres Java Coding Standard. The Infospheres
Group, Deparment of Computer Science, California Institute of Technology,
1997.

Joseph R. Kiniry. IDebug: An advanced debugging framework for Java.
California Institute of Technology Technical Report CS-TR-98-16, Califor-
nia Institute of Technology, November 1998.

Reto Kramer. iContract — the java design by contract tool. In Proceedings,
TOOLS ’98, volume 26 of TOOLS Conference Series. IEEE Computer
Society, 1998.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06a, Iowa State University, Department of Computer Science,
July 1998.

Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company, 1996.

24

[12] Bertrand Meyer. Advances in Object-Oriented Software Engineering, chap-
ter Design by Contract. Prentice-Hall, Inc., 1992.

[13] Bertrand Meyer. FEiffel: The Language. Prentice-Hall, Inc., 1992.

[14] Terence Parr. ANTLR Reference Manual. MageLang Institute, document
version 2.4.0 edition, September 1998.

[15] Sriram Sankar. An efficient top-down parsing algorithm for general context-
free grammars. Technical Report CSL-TR-93-562, Stanford University,
February 1993. Early work that lead to JavaCC and MetaMata work.

[16] The JavaCC Team. The Java Compiler Compiler (JavaCC), version 0.6.1.
SunTest and MetaMata, February 1997.

[17] R. Whitty. Object-oriented metrics: An annotated bibliography. ACM
SIGPLAN Notices, 31(4):45-75, 1996.

25

A Example Documentation Comment Block.

The following code block shows the various Javadoc tags that can be used in a
documentation comment when using the Infospheres Java Coding Standard.

/**

This is a large Javadoc comment block that contains every Javadoc
tag currently in use by us. It is used for a tag reference and a
cut-and-paste source.

Qversion Version-string CVS-Date-tag
Qauthor Author Name
Ghistory Description.

@bug Description of the bug.
Q@review Username Description.
Qtodo Username Description.

Qconcurrency (SEQUENTIAL | GUARDED | CONCURRENT) Semantics description.
Q@precondition (Expression) Description.
@requires (Expression) Description.

Q@ensures (Expression) Description.

Qgenerates (Expression) [Optional Description]

@modifies (SINGLE-ASSIGNMENT | QUERY | Expression) Description.
Q@postcondition (Expression) Description.

Q@invariant (Expression) Description.

Q@exception FullyQualifiedExceptionName IF (Expression) Description.
@param ParameterName Description.

Q@param ParameterName WHERE (Expression) Description.

Qreturn Description.

Q@deprecated Reference to replacement API.
@since Version-tag.

@hides FullObject.AttributeName [Optional Description]
Qoverrides FullPackageObject.MethodName [Optional Description]

Qequivalent (Expression | Code reference)

Qexample Description.

@see (Description | URL | FullyQualifiedClassname | Classname
Classname#methodName (parameters))

Q@design Description.

Q@references (Expression) [Optional Description]
Quses (Expression) [Optional Description]

¥R K ¥ K K K K K K K K K K K K KK K K O K

Qguard (Expression) [Optional Description]

26

* Q@values (Expression) [Optional Description]
*x/

27

