Debugger Support for Single-Threaded Event-Driven Applications

Fred Reiss and Elaine Cheong

May 2001
(CS262B Spring 2001

Abstract

For some applications, message-oriented systems
have a performance advantage over process-oriented
systems. However, message-oriented systems can be
more difficult to debug, due to their unpredictable
control flow. Our project allows programmers to de-
bug a message-oriented system using the more intu-
itive control flow of a process-oriented system. We
have developed an algorithm, threadsim, that maps
sequences of messages and handler functions in a
message oriented system onto a simulated process
tree in real time with constant amortized overhead
per message. Using this algorithm, we have created
an extension to gdb that can simulate threads on any
single-process event-driven system. We prove that
our algorithm will work for similar systems that run
an arbitrary number of message handlers in parallel.

1 Introduction and Motivation

1.1 Message-Oriented and Process-
Oriented Systems

Since the early days of time-sharing and interac-
tive computer programs, programmers have gener-
ally structured large interactive software systems in
one of two ways. An interactive software system gen-
erally has a set of jobs that it must perform, each
of which consists of a set of actions. A message-
oriented system (see Figure 1), also known as an
event-driven system, is divided into components, or
handlers, each of which is responsible for one or
more actions. To perform a job, the handlers com-
municate with each other by passing messages. A
process-oriented design (see Figure 2) divides the
system into processes, each of which handles all the
actions for a single job. Processes in a process-
oriented system negotiate access to shared resources
using locks.

The distinction between a message-oriented sys-
tem and a process-oriented system was first formal-

— — — —
L i e e
Jobs ho) o ho) ho)
S | 8§ | § | §
am - an o
Actions

Figure 1: General layout of a message-oriented sys-
tem. The system performs a set of jobs, each of
which consists of a set of actions.

Process

Process

Jobs

Process

Process

Actions

Figure 2: General layout of a process-oriented sys-
tem. The system performs a set of jobs, each of
which consists of a set of actions.

ized in Lauer and Needham’s 1978 paper, ”On the
Duality of Operating System Structures” [1]. Lauer
and Needham noted that there exists a simple direct
mapping between their canonical forms of message-
oriented and process-oriented systems. Sending a
message in a message-oriented system, for exam-
ple, is equivalent to acquiring a lock in a process-
oriented system. Given a message-oriented program,
Lauer and Needham presented a simple transforma-
tion to an equivalent process-oriented system, and
vice versa.

1.2 Performance Advantages of
Message-Oriented Systems

In principle, Lauer and Needham asserted, a
message-oriented system should have the same per-
formance as its dual process-oriented system. The
primitives required to implement the two models are
similar, and it should be possible to implement one
set of primitives with the same level of efficiency as
the other set.

In practice, several researchers [2] [3] [4] have
found that a message-oriented design can give signif-
icant performance advantages for highly-concurrent
network applications. Message-oriented systems al-
low certain optimizations that can be difficult or
impossible to implement for a process-oriented sys-
tem. A message-oriented system can pass messages
in batches, whereas only one process in a process-
oriented system can hold a lock at a given time. On
today’s production operating systems, a message-
oriented design give programmers greater flexibility
to schedule actions than does a process-oriented sys-
tem. This flexibility allows programmers to avoid
the overhead of priority scheduling and to schedule
actions in a way that reuses data in the processor’s
cache [5]. Architectures that allow programmers to
customize the scheduling of threads within a pro-
cess [6] [7] [8] have not yet found their way into
mainstream operating systems. For distributed sys-
tems, moving a thread of control from one machine
to another using remote procedure calls or thread
migration results in significant overhead. As a con-
sequence, giant-scale Internet services [9] typically
use a message-oriented architecture.

1.3 Debugging
Systems

Message-Oriented

In spite of their performance advantages, message-
oriented systems can be more difficult to debug than
the equivalent process-oriented systems [3]. Often, a
programmer wishes to troubleshoot the actions that

comprise a single job. For example, someone debug-
ging a Web server may want to know why a cer-
tain HTTP request causes the server to crash un-
der heavy load. Unfortunately, the handlers in a
message-oriented system typically execute in sepa-
rate threads of control. Thus, the flow of control
in message-oriented systems passes rapidly from one
job to another, and a programmer will quickly wan-
der far from the job of interest as she single-steps
through such a system. In a process-oriented sys-
tem, on the other hand, the flow of control follows
the logical causal relationships between the actions
in a job.

1.4 Overview of our Project

Our project gives programmers the freedom to debug
message-oriented systems using the more intuitive
control flow of a process-oriented system. We accom-
plish this goal by creating simulated threads of
control on top of a message-oriented system. Each
simulated thread consists of a set of actions from a
single job that are linked together by messages. We
have modified the gdb debugger [10] to use these
simulated threads as it would use conventional op-
erating system threads.

For our initial implementation, we have chosen to
focus on a particular type of message-oriented sys-
tem. A single-process event-driven design, also
known as a design that follows the Reactor pattern
[11], consists of a single component, known as the
event loop. The event loop communicates with
the operating system by using a system call such
as select(2) to determine whether any interesting
I/O events have occurred on a set of file descriptors.
When an event, such as data arriving on a network
port, occurs, the event loop executes the appropriate
handler function. [2] provides a more detailed de-
scription of single-process event-driven systems and
their relationship to other types of message-oriented
systems.

1.5 Design Goals

Our project had the following overall design goals:

e Our project should require minimal modifica-
tions to the software that dispatches events.

e Our project should be extendible in a straight-
forward way to support multiple event loops, as
well as recursive calls into a single event loop.

e Our project should have a minimal performance
impact while the system being debugged is not

running inside a debugger, while still permitting
the debugging of core dumps.

e Our project should work with the existing
graphical front ends to gdb without modifica-
tions to those graphical front ends.

1.6 Roadmap
The remainder of this paper is organized as follows:

e Section 2 describes the algorithm that our
project uses to map events to simulated threads.
In sections 2.6 and 2.7, we prove that this algo-
rithm is correct and runs in time proportional
to the number of events.

e Section 3 describes the current implementation
of our project.

e Section 4 describes several possible future direc-
tions for our project.

e Section 5 summarizes related work.

e Section 6 analyzes the extent to which our
project met its original design goals.

2 Mapping Events to Simu-
lated Threads

In this section, we describe the algorithm,
threadsim, that we use to map sets of events to sim-
ulated threads. threadsim works by maintaining a
”process tree” of simulated threads. In this process
tree, simulated thread A is the parent of simulated
thread B if and only if an event handler in thread A
scheduled the first event in thread B. The algorithm
allows an arbitrary number of event handlers to run
at the same time and adds an overhead proportional
to the number of events that occur.

2.1 Definitions
2.1.1 Events

We define an event to be an ordered triple
(State, Children, Node), where:

e State : Exp is the state of the event.

e Children is an ordered list of the events that
are direct descendants (See section 2.1.3) of
the event.

e Node is the Node (See section 2.2) associated
with the event.

Start
scheduling
an event
Scheduled
handler called
', cancelling an event
Active before the handler
executes

handler completes
v

Cancelled

Figure 3: Legal state transitions for an event.

2.1.2 States of Events

At any time, an event can have one of the following
four states:

e Start, which means that the system has not
done anything with regard to the event.

e Scheduled, which means that the system has
registered an event handler for the event, but
the event has not occurred.

e Active, which means that the event’s handler is
executing.

e Canceled, which means that the event was reg-
istered with the system but is no longer regis-
tered.

An event is alive if it is in either the Scheduled
state or the Active state.

An event may change from one state to another.
The following state transitions are considered legal:

Start, Scheduled)

Scheduled, Active)

(

(
e (Active, Canceled)
e (Scheduled, Canceled)

Figure 3 summarizes the legal state transitions.

Any state transition that is not legal is an illegal
state transition.

2.1.3 Properties of Events

Event a is an unnamed event if a.Node.Name =
nil.
Event a is a named event if it is not unnamed.

We say that event b is a direct descendant of
event q if the event handler function for a scheduled
event b.

Event b, is an indirect descendant of event a;
if there exist events as, ...,ap—1, such that a;4; is a
direct descendant of a;, for all integers ¢ in the range
[1,n —1].

Event b is a rightmost direct descendant of
event a if:

e b is a direct descendant of a, and

e b was the rightmost unnamed entry in a’s
Children list when a’s state changed from
Active to Canceled.

Event b, is a rightmost indirect descendant of
event a; if there exist events as, ..., ap—1, such that
a;+1 is a rightmost direct descendant of a;, for all
integers i in the range [1,n — 1].

2.2 Nodes

The threadsim algorithm operates on a ”process
tree” of simulated threads and a mapping from
events to nodes of this tree. Each node in the simu-
lated process tree has the following properties:

e Parent, which points to the node’s parent node.

e RightSib and LeftSib, which link the named
or unnamed children of the parent node into a
list.

e Right NamedChild and RightUnnamedChild,
which point to the rightmost elements of lists
of the node’s named and unnamed children, re-
spectively.

e Name :, the name of the node, is the thread
ID of the simulated thread that corresponds to
the node.

Node N is unnamed if N.Name = nil.

The root of the tree is a special node, which we
denote by ROOT. ROOT has only named children.

2.3 Naming Conventions

In the sections that follow, we use uppercase letters
to refer to nodes and lowercase letters to refer to
events.

We denote the set of all non-root nodes in the
simulated process tree by V.

2.4 Invariants

In this section, we outline the invariants that the
threadsim algorithm maintains.

At any time, all the nodes in N are part of a tree
rooted at ROOT.

For any node AeN, there is exactly one event e
such that e.Node = A. This event e is in either the
Scheduled or the Active state. Furthermore, if event
e is in the Scheduled or Active state, then e.Node
must not be nil.

Consider an arbitrary node AeN. Let a be the
event such that a.Node = A. Let B be A.Parent.
Let b be the event such that b.Node = B, or nil if
B = ROOT.

e If node A is an unnamed node, then:

— A is a leaf node.
— B is not ROOT.
— A is one of B’s unnamed children.

— If A is the most recently-created of B’s un-
named children, then A is B’s rightmost
unnamed child.

— a is in the Scheduled state.
— b is in the Active state.

— a is a direct descendant of b.

e If node A is a named node, then exactly one
of the following is true:

— B is nil, and A.Parent = ROOT.
Furthermore, there is no indirect right-
most descendant of ¢ of b that is in the
Scheduled or Active state.

— Bis not nil, and a is a direct descendant
of b. Furthermore, both a and b are in the
Active state, and A is one of B’s named
children.

— B is not nil. a is a direct descendant of
event ¢, and b is an indirect rightmost de-
scendant c.

2.5 The threadsim Algorithm

The threadsim algorithm maintains the invariants
specified in section 2.4 by modifying the tree of nodes
in response to changes in the states of events.

The algorithm takes as its input an event e, a new
state ojeq for that event, and a third parameter p
that is the event whose handler scheduled e or nil
otherwise.

The algorithm makes use of the following subrou-
tines:

e e e el
A S T

17:
18:
19:
. else if (0414, Onew) = (Active, Canceled) then
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

procedure

AddRightNamedChild(A, B) makes node B
the rightmost of node A’s named children.

AddRightNamedChildren(A, L) adds all the
nodes in list L to the right of node A’s named
children.

AddRightUnnamedChild(A, B) makes node B
the rightmost of node A’s unnamed children.

RemoveUnnamedChild(A, B) removes node B
from node A’s unnamed children.

RemoveNamedChild(A, B) removes node B
from node A’s named children.

Inherit(A, B) takes two nodes A and B, where
A is the parent of B and B has no children.
This function removes B from A’s children and
then replaces A with B in the tree of nodes. It
then gives names to all the unnamed children of
B and adds them to B’s named children.

threadsim(e, 0pew, p)

Oold < e.State
if (0514, Onew) = (Start, Scheduled) then
E < new Node
e.Node + FE
if p=nil then
E.Name < new Name
AddRightNamedChild(ROOT, E)
else
E.Name + nil
AddRightUnnamedChild(p.Node, E)
end if

. else if (0414, Onew) = (Scheduled, Active) then

FE < e.Node

if E.Name = nil then
E.Name < new Name
P + E.Parent
RemoveUnnamedChild(P, E)
AddRightNamedChild(P, E)

end if

E + e.Node
P « E.Parent
if E.Name = nil then
RemoveUnnamedChild(P, E)
else
H + E.RightUnnamedChild
if H = nil then
Name all unnamed children of E
L < named children of
AddRightNamedChildren(ROOT, L)
else

32: Inherit(E, H)

33: end if

34: end if

35: e.Node < nil

36: delete E

37: else if (044, 0new) = (Scheduled,Canceled)
then

38: FE + e.Node

39: P+ E.Parent

40: if E.Name = nil then

41: RemoveUnnamedChild(P, E)
42: else

43: RemoveNamedChild(P, E)
44: end if

45: e.Node < nil

46: delete B

47: else

48: Error: Illegal state transition.
49: end if

50: e.State < Tpew
51: Return e

2.6 Correctness of threadsim

Theorem 2.1 (Correctness of threadsim) The
threadsim algorithm maintains the invariants in
section 2.4 across any sequence of legal state transi-
tions for any finite number of events.

Proof (By induction on the number of state transi-
tions)

Let (e, 0014, Onew) denote event e leaving state o4
and entering state opeqy-

e Base Case If the number of state transitions is
0, then the only node in the tree of simulated
threads is ROOT, then the invariants are triv-
ially true.

e Inductive Case Assume that the invariants still
hold after ¢ state transitions. It suffices to show
that the invariants hold after ¢ 4+ 1 transitions.

In the cases below, we let E denote e.Node and
P denote e.Node.Parent. By the inductive hy-
pothesis, both £ and P must exist. p denotes
the event such that p.Node = P, or nil if no
such event exists.

— Case 1: The (i + 1)th transition is
(e, Start, Scheduled).

x Case la: The event p whose handler
is scheduling e is still in the Active
state. By the inductive hypothesis,
there must be a Node in the process

tree that corresponds to p. Lines 3-4
and 9-10 of threadsim create a new
unnamed node E and make E an un-
named child of P. This new unnamed
nodes satisfies all the invariants in sec-
tion 2.4 that apply to unnamed nodes.
Case 2b: Event e was scheduled out-
side of any event handler. Lines 3-4
and 6-7 of threadsim create a new
named node F that is a child of ROOT
and satisfies the invariants that apply
to children of ROOT.

Lines 37-41 of threadsim remove E from
the children of P and delete E. Since
FE has no children, the invariants are still
true.

Thus, by induction on the number of state transi-
tions, threadsim preserves the invariants in section
2.4 over any valid sequence of state transitions. |

Corollary 2.2 threadsim maintains the invariants
in section 2.4 regardless of the number of event han-
dlers that execute simultaneously.

— Case 2: The (i + 1)th transition is
(e, Scheduled, Active).

+x Case 2a: F is an unnamed node. By

2.7 Running Time of threadsim

Theorem 2.3 (Constant overhead per event) Letn

— Case 3:
(e, Active, Canceled).

the inductive hypothesis, £ must be
a leaf node, P must not be ROOT,
and e must be a direct descendant of
p. Lines 15-18 of threadsim give E a
new name and move E to the named
children of P, so the invariants are still
satisfied.

Case 2b: FE is a named node.
threadsim does not modify the pro-
cess tree, so the invariants are trivially
true.

The (i + 1)th transition is

x Case 3a: e has a direct rightmost de-
scendant h. Let H denote h.Node.
By the inductive hypothesis, H must
be the rightmost unnamed child of £
and must be a leaf node. Line 31 of
threadsim uses the Inherit subrou-
tine to name all of E’s children and
replace E with H. All of the new chil-
dren of H are named nodes, and H
is an indirect rightmost descendant of
their original parents, so the invariants
still hold.

Case 3b: e does not have a right-
most direct descendant. Lines 28-29
of threadsim give all of the children of
E names and make all those children
children of the root. Since there is no
longer any indirect rightmost descen-
dant of any of the original parents of
these children, making them children
of ROOT preserves the invariants.

be the number of events that make a transition from
the Start state to the Scheduled state. The total
running time of threadsim to process all the state
transitions for these events is O(n).

Proof For each event e that transitions from Start
to Scheduled, threadsim will perform the following
actions at most once:

e Create a new Node F and set e.Node < E.

e Assign a fresh name to e.Node and move e.Node
from its parent’s unnamed children to its par-
ent’s named children.

e Call Inherit(e.Node.Parent,e.Node) (See sec-
tion 2.5). Only an unnamed node can inherit
its parent’s position, and, in doing so, the node
becomes named.

e Make e.Node a child of the root. Once a node is
a child of the root, its position will not change.

e Delete e.Node, remove e.Node from its parent’s
children, and set e.Node < nil.

Each of these operations can clearly be made to
run in O(1) time. Thus, threadsim adds an over-

head of O(n). |}

2.8 Optimizations

2.8.1 recycle

It is common for event-driven systems to execute
a sequence of identical events. For example, to re-
ceive a large amount of data from a network socket,
an event-driven system may use a sequence of read

— Case 4: The (i + 1)th transition is
(e, Scheduled, Canceled). By the induc-
tive hypothesis, £ must be a leaf node.

events. The threadsim algorithm as stated above
treats each such read event as a distinct entity, cre-
ating and destroying a Node for each one. To reduce

the overhead of mapping such repeated events, we
instead use the following algorithm to handle them:
procedure recycle(e)

. if e.State # Active then

2: Error: recycle() only works on events in the
Active state.

end if

E + e.Node

for all F' in E’s unnamed children do
RemoveUnnamedChild(E, F)
F.Name < new Name
AddRightNamedChild(E, F)

end for

10: e’ + new Event

11: €'.State < Scheduled

12: ¢'.Node + E {Recycle node E.}

13: e.Node < nil

14: e.Children < e.Children + €’

15: Return e’

—_

Clearly, recycle(e) is equivalent to:

e’ < new Event

e.Children + e.Children + €'
: threadsim(e', Scheduled)

: threadsim(e, Canceled)

2.8.2 Eliminating Children

The Children fields of Events are not necessary to
the correct operation of threadsim, since the algo-
rithm never reads from those field. The fields can
therefore be eliminated.

3 Current Implementation

This section describes the current state of our
project. Figure 4 shows the overall architecture of
our system.

3.1 The rlib Library

We have implemented the threadsim algorithm in a
library called rlib. Our implementation is faithful
to the description of threadsim given in this paper
in most respects. rlib also implements the opti-
mizations in section 2.8. Our library is written en-
tirely in C, and we use a memory pool to speed the
allocation and deallocation of Nodes.

3.2 Modifications to the Event Loop

rlib currently assumes that there is only one event
loop. The library exports the following C interface
to the event loop:

iﬁ process boundary

gdb | || program Event
being |« Loop
custom target i debugged lerary
rlib
i < special code
3 P internal state
ptrace() i

Figure 4: Overall architecture of our project.

e void rlib_evt_init () initializes r1ib.

e void rlib_evt_sched_event(rlib_uid_t =*
evt_uid, void * handler) indicates to rlib
that an event has entered the Scheduled state.
evt_uid is a event-loop-specific unique identi-
fier for the event. rlib stores this identifier
in a hash table and uses the table to resolve
further references to the event. handler points
to the beginning of the handler function for the
event.

e void rlib_evt_cancel_event(rlib_uid_t *
evt_uid) indicates to rlib that an event has
entered the Canceled state.

e void rlib_evt_enter_ handler(rlib_uid_t
* evt_uid) tells rlib that the indicated
event is entering the Active state. In order
to handle recursive calls into the event loop
from handler functions, rlib keeps a stack of
events that are in the Active state. A call to
rlib_evt_enter_handler causes rlib to push
a pointer to the indicated event’s node onto
this stack.

e void rlib_evt_leave_handler() indicates to
rlib that an event handler function has re-
turned. No arguments are necessary, since rlib
keeps a stack of the events that are in the Active
state.

We chose to use the event loop of the ACE [12] net-
working library for our initial implementation. ACE
is a collection of C++ wrappers for networking APIs
and implementations of common networking design
patterns. The library is in active use by several hun-
dred development teams, mostly in the embedded
systems community. We inserted calls to the five

functions in r1ib’s event loop interface into the ap-
propriate parts of ACE, along with approximately
150 lines of code to convert C++ virtual functions
into C function pointers and to marshal arguments
for the r1ib API functions.

3.3 Modifications to gdb

One of the primary design goals of the gdb debugger
is portability across machine architectures and oper-
ating systems. The debugger acts on the underlying
hardware and operating system through an abstrac-
tion layer known as the ”target” interface. We added
a new target to gdb, replacing the target that imple-
ments Linux thread support with one that simulates
threads using information gleaned from the internal
state of r1ib. To track changes to the internal state
of the library, our code sets special breakpoints at
special "hook” functions inside rlib. Implement-
ing this addition to gdb proved to be a very difficult
task. Some of gdb’s assumptions about thread li-
braries do not hold true for our simulated threads.
For example, gdb assumes that the frame pointer of
a thread will not change unless a push, pop, or call
instruction executes. However, the stack pointers of
our simulated threads can undergo sudden changes
as threads jump from one event handler to another.
Remedying this and other ”impedance mismatches”
required approximately 2500 lines of code.

3.4 Support for Graphical User Inter-
faces

We have tested our modified version of gdb with ddd
and kdbg, two of the most popular and complete
graphical front ends for gdb and found no incompat-
ibilities. Since our modifications to gdb were mostly
confined to the low-level, target-specific portions of
the debugger, we expect that other graphical front
ends for gdb will work without modification.

4 Future Work

Our current implementation of debugger support for
message-oriented programming is a work in progress.
In the short run, we will continue to fix bugs and to
add features. Two features we plan to add soon are
support for reading core dumps into the debugger
and support for event loop libraries other than ACE.
We do not anticipate these additions being overly
difficult. To date, our project has only been tested
under Linux, and we would like to support other
operating systems.

The threadsim algorithm supports arbitrary
overlapping of event handlers, as long as access to
the threadsim function is serialized. An obvious
avenue of future research is to apply threadsim
towards debugging message-oriented systems with
multiple threads of control, especially distributed
message-oriented systems like Inktomi [9]. A version
of our project for distributed systems would need to
simulate thread migration in addition to simulating
threads.

Since the operations that threadsim performs on
Nodes deal almost entirely with immediate parents
and children of those Nodes, it should be possible
to design a version of threadsim for distributed ap-
plications that uses more fine-grained locking. Such
a locking protocol would allow the algorithm to run
on a distributed system with a minimal reduction in
concurrency.

5 Related Work

Debugging a message-oriented system using the con-
trol flow of process-oriented system is, as far as we
know, a new area of research. In this section, we
summarize past research that is somewhat similar
to the concepts we explore in this paper.

Researchers have developed tools for visualizing
streams of messages in message-oriented systems.
Some of the visualizations these tools produce are
similar to the simulated threads that our project cre-
ates. However, these tools are batch systems, unlike
rlib, which updates the mapping from events to
simulated threads in real time. Furthermore, none
of these researchers have implemented a debugger
that uses their visualizations.

There are several debuggers on the market for
message-oriented distributed systems that use re-
mote procedure calls, especially for systems that ad-
here to the CORBA standard. These debuggers al-
low the user to step through RPC invocations on
remote machines as if the procedures were execut-
ing on a local machine. However, stepping through
RPC invocations seems to be the full extent of the
novel features of these debuggers. A distributed de-
bugger based on the threadsim algorithm would be
strictly more general.

6 Conclusion

Our project has met its overall goal of allowing pro-
grammers to debug a message-oriented system using
the more intuitive control flow of a process-oriented
system. In addition, the design and implementation

of our project has met the project’s more specific
design goals:

Event loops can use the functionality of our
project with the addition of as little as ten lines
of code. Our rlib library handles most of the
necessary bookkeeping in a way that is portable
across different implementations of the single-
threaded event-driven model.

We have proven that our threadsim algorithm
works properly for any serial sequence of legal
event state transitions. Thus, as long as the
threadsim function runs in a critical section,
the algorithm can handle an arbitrary number
of possibly recursive event loops, running in dif-
ferent threads of control.

We have proven that the amortized overhead
threadsim is constant time for each event that
enters the system. Each event typically results
in one or more system calls, and one iteration
of threadsim should be faster than a system
call, so we do not anticipate a significant perfor-
mance decrease from linking against r1ib dur-
ing the debugging phase of a project.

Since we modified only the low-level, target-
specific portions of the gdb debugger, our
project works with graphical front ends to gdb
without modification to those front ends.

References

[1]

3]

[4]

[5]

Lauer, H.C., Needham, R.M., ”On the Dual-
ity of Operating System Structures,” in Proc.
Second International Symposium on Operating
Systems, IRIA, Oct. 1978, reprinted in Operat-
ing Systems Review, 13,2 April 1979, pp. 3-19.

Pai, V.S. et al.,, "Flash: An Efficient and
Portable Web Server.” USENIX 1999.

Welsh, Matt et al., ”A Design Framework for
Highly Concurrent Systems.” Submitted for
publication, April 2000.

Kegel, Dan. ”The C10K
http://www.kegel.com/c10k.html

Problem.”

Larus, James and Parkes, Michael. ” Enhanced
Server Performance with StagedServer.” Lec-
ture. U.C. Berkeley, October 2000.

Anderson, Thomas E. et al., ”Scheduler Ac-
tivations: Effective Kernel Support for the
User-Level Management of Parallelism.” ACM
Transactions on Computer Systems, 1992.

[7]

Kaashoek, M. Frans et al., ” Application Perfor-
mance and Flexibility on Exokernel Systems.”
16th Symposium on Operating Systems Princi-
ples, 1997.

Bershad, Brian N., et al., ” Extensibility, Safety,
and Performance in the SPIN Operating Sys-
tem.” 15th Symposium on Operating Systems
Principles, 1996.

Brewer, Eric. ”Lessons from Giant-Scale Ser-
vices.” Submitted for publication, 1999.

Free Software Foundation, gdb. Computer pro-
gram. http://sources.redhat.com/gdb.

Schmidt, Douglas C., "Reactor: An Object Be-
havioral Pattern for Concurrent Event, Demul-
tiplexing and Event Handler Dispatching.” Au-
gust 1994.

Schmidt, Douglas C., ”The ADAPTIVE Com-
munication Environment: An Object-Oriented
Network Programming Toolkit for Developing
Communication Software.” Sun User Group
Conference, 1993.

